On the central limit problem for sums with random coefficients

  • B. M. Brown
  • G. K. Eagleson
  • N. I. Fisher
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, B.M., Eagleson, G.K.: Martingale convergence to infinitely divisible laws with finite variances. Trans. Amer. Math. Soc. 162, 449–453 (1971)Google Scholar
  2. 2.
    Brown, G.H., Fisher, N.I.: Subsampling a mixture of sampled material. Technometrics 14, 663–668 (1972)Google Scholar
  3. 3.
    Hájek, J., šidák, Z.: Theory of rank tests. New York: Academic Press, 1967Google Scholar
  4. 4.
    Jamison, B., Orey, S., Pruitt, W.: Convergence of weighted averages of independent random variables. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 4, 40–44 (1965)Google Scholar
  5. 5.
    Scott, D.J.: Central limit theorems for martingales and for processes with stationary increments, using a Skorokhod representation approach. Adv. Applied Prob. 5, 119–137 (1973)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • B. M. Brown
    • 1
  • G. K. Eagleson
    • 1
  • N. I. Fisher
    • 2
  1. 1.Statistical LaboratoryCambridgeEngland
  2. 2.Division of Mathematical StatisticsCSIRONewtownAustralia

Personalised recommendations