Left continuous moderate Markov processes

  • Kai Lai Chung
  • Joseph Glover


Stochastic Process Probability Theory Markov Process Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung, K.L., Doob, J.L.: Fields, optionality, and measurability. Amer. J. Math. 87, 397–424 (1965)Google Scholar
  2. 2.
    Chung, K.L.: A simple proof of Doob's convergence theorem, Sem. de Probabilités V. Lecture Notes in Math. 191. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Chung, K.L.: On the fundamental hypotheses of Hunt processes. Symposia Mathematica, Istituto Nazionale di Alta Matematica, Vol. IX, 43–52. New York-London: Academic Press 1972Google Scholar
  4. 4.
    Dellacherie, C.: Capacités et processus stochastiques. Ergebnisse der Mathematik, Band 67. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  5. 5.
    Dellacherie, C.: Ensembles aléatoires, Sem. de Probabilités III. Lecture Notes in Math. 88. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  6. 6.
    Mertens, J.F.: Théorie des processus stochastiques généraux applications aux surmartingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22, 45–68 (1972)Google Scholar
  7. 7.
    Meyer, P.A.: Processus de Markov. Lecture Notes in Math. 26. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  8. 8.
    Meyer, P.A.: Probabilités et potentiel. Paris: Hermann 1966Google Scholar
  9. 9.
    Smythe, R.T.: Remarks on the hypotheses of duality, Sem. de Probabilités VIII. Lecture Notes in Mathematics 381. Berlin-Heidelberg-New York: Springer 1972/1973Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Kai Lai Chung
    • 1
  • Joseph Glover
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations