Generating a random permutation with random transpositions

  • Persi Diaconis
  • Mehrdad Shahshahani


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldous, D.: Mixing time inequalities for finite Markov chains. Manuscript circulated, January 1980Google Scholar
  2. Ayoub, R.: An Introduction to the Analytic Theory of Numbers. Amer. Math. Soc. Rhode Island: Providence 1963Google Scholar
  3. Bhattacharya, R.N.: Speed of convergence of the n-fold convolution of a probability measure on a compact group. Z. Wahrscheinlichkeitstheorie verw. Gebiete 25, 1–10 (1972)Google Scholar
  4. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. New York: Interscience 1962Google Scholar
  5. Diaconis, P., Flatto, L., Shepp, L.: On generating a random permutation with transpositions. Unpublished manuscript 1980Google Scholar
  6. Feller, W.: An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed. New York: Wiley 1968Google Scholar
  7. Frobenius, F.G.: über die Charakter der Symmetrischen Gruppen. Berliner Berichte (1901)Google Scholar
  8. Griffeath, D.: A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 15–106 (1975)Google Scholar
  9. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II. Berlin: Springer-Verlag 1970Google Scholar
  10. Heyer, H.: Probability Measures on Locally Compact Groups. Berlin: Springer-Verlag 1977Google Scholar
  11. Ingram, R.E.: Some characters of the symmetric group. Proc. Amer. Math. Soc. 1, 358–369 (1950)Google Scholar
  12. James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics 682. Berlin-Heidelberg-New York: Springer-Verlag 1978Google Scholar
  13. Knuth, D.: The Art of Computer Programming, Vol.II. Reading, Massachusetts: Addison Wesley 1969Google Scholar
  14. Littlewood, D.E.: The Theory of Group Characters, 2nd ed. London: Oxford University Press 1958Google Scholar
  15. MacDonald, I.G.: Symmetric Functions and Hall Polynomials. London: Oxford University Press 1979Google Scholar
  16. Major, P., Shlosman, S.B.: A local limit theorem for the convolution of a probability measure on a compact group. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 137–148 (1979)Google Scholar
  17. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. New York: Academic Press 1974Google Scholar
  18. Reeds, J.: An analysis of Riffle shuffles. (Unpublished manuscript 1980)Google Scholar
  19. Robbins, D.P., Bolker, E.D.: The bias of three pseudo random shuffles, (to appear in Aequations Mathematicae)Google Scholar
  20. Serre, J.P.: Linear Representations of Finite Groups. New York-Berlin-Heidelberg: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Persi Diaconis
    • 1
  • Mehrdad Shahshahani
    • 1
  1. 1.Department of StatisticsStanford UniversityStanfordUSA

Personalised recommendations