Advertisement

Generating a random permutation with random transpositions

  • Persi Diaconis
  • Mehrdad Shahshahani
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Random Permutation Random Transposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D.: Mixing time inequalities for finite Markov chains. Manuscript circulated, January 1980Google Scholar
  2. Ayoub, R.: An Introduction to the Analytic Theory of Numbers. Amer. Math. Soc. Rhode Island: Providence 1963Google Scholar
  3. Bhattacharya, R.N.: Speed of convergence of the n-fold convolution of a probability measure on a compact group. Z. Wahrscheinlichkeitstheorie verw. Gebiete 25, 1–10 (1972)Google Scholar
  4. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. New York: Interscience 1962Google Scholar
  5. Diaconis, P., Flatto, L., Shepp, L.: On generating a random permutation with transpositions. Unpublished manuscript 1980Google Scholar
  6. Feller, W.: An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed. New York: Wiley 1968Google Scholar
  7. Frobenius, F.G.: über die Charakter der Symmetrischen Gruppen. Berliner Berichte (1901)Google Scholar
  8. Griffeath, D.: A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 15–106 (1975)Google Scholar
  9. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II. Berlin: Springer-Verlag 1970Google Scholar
  10. Heyer, H.: Probability Measures on Locally Compact Groups. Berlin: Springer-Verlag 1977Google Scholar
  11. Ingram, R.E.: Some characters of the symmetric group. Proc. Amer. Math. Soc. 1, 358–369 (1950)Google Scholar
  12. James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics 682. Berlin-Heidelberg-New York: Springer-Verlag 1978Google Scholar
  13. Knuth, D.: The Art of Computer Programming, Vol.II. Reading, Massachusetts: Addison Wesley 1969Google Scholar
  14. Littlewood, D.E.: The Theory of Group Characters, 2nd ed. London: Oxford University Press 1958Google Scholar
  15. MacDonald, I.G.: Symmetric Functions and Hall Polynomials. London: Oxford University Press 1979Google Scholar
  16. Major, P., Shlosman, S.B.: A local limit theorem for the convolution of a probability measure on a compact group. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 137–148 (1979)Google Scholar
  17. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. New York: Academic Press 1974Google Scholar
  18. Reeds, J.: An analysis of Riffle shuffles. (Unpublished manuscript 1980)Google Scholar
  19. Robbins, D.P., Bolker, E.D.: The bias of three pseudo random shuffles, (to appear in Aequations Mathematicae)Google Scholar
  20. Serre, J.P.: Linear Representations of Finite Groups. New York-Berlin-Heidelberg: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Persi Diaconis
    • 1
  • Mehrdad Shahshahani
    • 1
  1. 1.Department of StatisticsStanford UniversityStanfordUSA

Personalised recommendations