On the strong law of large numbers for a class of stochastic processes

  • J. R. Blum
  • D. L. Hanson
  • L. H. Koopmans
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. math. Statistics 23, 493–507 (1952).Google Scholar
  2. [2]
    Cramér, H.: Sur un nouveau théoreme-limite de la théorie des probabilités. Actual. sci. industr., No. 736, Paris (1938).Google Scholar
  3. [3]
    Doob, J. L.: Stochastic Processes. New York: John Wiley and Sons 1953.Google Scholar
  4. [4]
    Ibragimov, I. A.: Spectral functions of certain classes of stationary Gaussian processes. Doklady. Akad. Nauk. SSSR n. Ser. 137, 1046–1048 (1961). Translated in Soviet Mathematics 2, 403–405 (1961).Google Scholar
  5. [5]
    Lamperti, J., and P. Suppes: Chains of infinite order and their application to learning theory. Technical Report No. 18, Applied Math. and Stat. Lab., Stanford Univ. (1958).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • J. R. Blum
    • 1
    • 2
  • D. L. Hanson
    • 1
    • 2
  • L. H. Koopmans
    • 1
    • 2
  1. 1.Dept. of MathematicsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Sandia CorporationUSA

Personalised recommendations