On the strong law of large numbers for a class of stochastic processes

  • J. R. Blum
  • D. L. Hanson
  • L. H. Koopmans
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. math. Statistics 23, 493–507 (1952).Google Scholar
  2. [2]
    Cramér, H.: Sur un nouveau théoreme-limite de la théorie des probabilités. Actual. sci. industr., No. 736, Paris (1938).Google Scholar
  3. [3]
    Doob, J. L.: Stochastic Processes. New York: John Wiley and Sons 1953.Google Scholar
  4. [4]
    Ibragimov, I. A.: Spectral functions of certain classes of stationary Gaussian processes. Doklady. Akad. Nauk. SSSR n. Ser. 137, 1046–1048 (1961). Translated in Soviet Mathematics 2, 403–405 (1961).Google Scholar
  5. [5]
    Lamperti, J., and P. Suppes: Chains of infinite order and their application to learning theory. Technical Report No. 18, Applied Math. and Stat. Lab., Stanford Univ. (1958).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • J. R. Blum
    • 1
    • 2
  • D. L. Hanson
    • 1
    • 2
  • L. H. Koopmans
    • 1
    • 2
  1. 1.Dept. of MathematicsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Sandia CorporationUSA

Personalised recommendations