The lifetime of conditioned Brownian motion

  • M. Cranston
  • T. R. McConnell


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chow, Y.S., Teicher, H.: Probability Theory. Berlin-Heidelberg-New York: Springer 1978CrossRefMATHGoogle Scholar
  2. 2.
    Chung, K.L.: Lectures from Brownian motion to Markov processes. Berlin-Heidelberg-New York: Springer 1982CrossRefMATHGoogle Scholar
  3. 3.
    Doob, J.L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431–458 (1957)MathSciNetMATHGoogle Scholar
  4. 4.
    Getoor, R.K., Sharpe, M.J.: Last Exit Decompositions. Indiana Math. J. 23, 377–404 (1973)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ito, K., McKean, H.P.: Diffusion Processes and their Sample Paths. Berlin-Heidelberg-New York: Springer 1974MATHGoogle Scholar
  6. 6.
    Lamb, C.W.: A note on harmonic functions and martingales. Annals Math. Stat. 42, No. 6, 2044–2049 (1971)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Martin, R.S.: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49, 137–172 (1941)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Meyer, P.A., Smythe, R.T., Walsh, J.B.: Birth and Death of Markov processes. Proc. Sixth Berkeley Sympos. Math. Statist. and Probability Vol. III, 295–305, Univ. Calif. (1972)Google Scholar
  9. 9.
    Pittenger, A.O., Shih, C.T.: Coterminal families and the strong Markov property. Trans. Amer. Math. Soc. 182, 1–42 (1973)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. Cranston
    • 1
    • 2
  • T. R. McConnell
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA
  2. 2.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations