An invariance principle for the law of the iterated logarithm

  • V. Strassen
Article

Summary

Let Sn be the sum of the first n of a sequence of independent identically distributed r. v. s. having mean 0 and variance 1. One version of the law of the iterated logarithm asserts that with probability one the set of limit points of the sequence
$$((2n{\text{ log }}\log n)^{ - 1/2} S_n )_{n \geqq 3} $$
coincides with «-1, 1» = {x:x real and ¦x¦≦ 1} (see Hartman-Wintner [6]). Now consider the continuous function ηn on «0, 1» obtained by linearly interpolating (2 n log log n)−1/2Si at i/n. Then we prove (theorem 3) that with probability one the set of limit points of the sequence (ηn)n≧3 with respect to the uniform topology coincides with the set of absolutely continuous functions x on «0, 1» such that
$$x(0) = 0$$
and
$$\int {\dot x^2 dt \leqq 1} $$
As applications we obtain, e. g.,
$$Pr\left\{ {\mathop {{\text{lim sup}}}\limits_{n \to \infty } n^{ - 1 - (a/2)} (2{\text{ log log }}n)^{ - (a/2)} \sum\limits_{i = 1}^n {|S_i |a} = \frac{{2(a + 2)^{(a/2) - 1} }}{{\left( {\int\limits_0^1 {\frac{{dt}}{{\sqrt {1 - t^a } }}} } \right)^a a^{a/2} }}} \right\} = 1$$
for any a ≧ 1, and
$$Pr\left\{ {\mathop {{\text{lim sup}}}\limits_{n \to \infty } v_n = 1 - {\text{exp}}\left\{ { - 4\left( {\frac{1}{{c^2 }} - 1} \right)} \right\}} \right\} = 1$$
Where vn is the frequency of the events
$$S_i > c(2i\log \log i)^{1/2} $$
among the first n integers i (0 ≦ c≦ 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chung, K. L.: On the maximum partial sum of sequences of independent random variables. Trans. Amer. Math. Soc., 64, 205–233 (1948).Google Scholar
  2. [2]
    Diedonné, I.: Foundations of Modern Analysis, Pure and Applied Mathematics. New York-London: 1960.Google Scholar
  3. [3]
    Doob, J. L.: Stochastic Processes, Wiley-Publications in Statistics. New York-London: Wiley 1959.Google Scholar
  4. [4]
    Erdös, P., and M. Kac: On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. 52, 292–302 (1946).Google Scholar
  5. [5]
    Feller, W.: The general form of the so-called law of the iterated logarithm. Trans. Amer. Math. Soc., 54, 373–402 (1943).Google Scholar
  6. [6]
    Hartman, P., and A. Wintner: On the law of the iterated logarithm. Amer. J. Math., 63, 169–176 (1941).Google Scholar
  7. [7]
    Kolmogorov, A.: Das Gesetz des iterierten Logarithmus. Math. Annalen 101, 126–135 (1929).Google Scholar
  8. [8]
    Lamperti, J.: On convergence of stochastic processes, Trans. Amer. Math. Soc. 104, 430–435 (1962).Google Scholar
  9. [9]
    Loève, M.: Probability Theory, The University series in higher Mathem., Princeton (1960).Google Scholar
  10. [10]
    Riesz, F., and B. Sz. Nagy: Vorlesungen über Funktionalanalysis. Hochschulbücher fur Mathematik, Berlin (1956).Google Scholar
  11. [11]
    Skorokhod, A.B.: Research on the Theory of Random Processes. Kiew (1961) (in Russian).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • V. Strassen
    • 1
    • 2
  1. 1.University of CaliforniaBerkeley
  2. 2.UniversitÄt GöttingenDeutschland

Personalised recommendations