Advertisement

The spectrum of dynamical systems arising from substitutions of constant length

  • F. M. Dekking
Article

Summary

Minimal flows and dynamical systems arising from substitutions are considered. In the case of substitutions of constant length the trace relation of the flow is calculated and is used to determine the spectrum of the dynamical system. Several methods are indicated to obtain new substitutions from given ones, leading among other things to a description of the behaviour of powers of the shift homeomorphism on the system arising from any substitution.

Keywords

Dynamical System Stochastic Process Probability Theory Mathematical Biology Minimal Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coven, E., Hedlund, G.A.: Sequences with minimal block growth. Math. Systems Theory 7, 138–153 (1973)Google Scholar
  2. 2.
    Coven, E., Keane, M.: The structure of substitution minimal sets. Trans. Amer. math. Soc. 162, 89–102 (1971)Google Scholar
  3. 3.
    Dekking, M., Michel, P., Keane, M.: Substitutions. Seminar, Rennes. [Unpublished manuscript, 1977]Google Scholar
  4. 4.
    Ellis, Robert, Gottschalk, W.H.: Homomorphisms of transformation groups. Trans. Amer. math. Soc. 94, 258–271 (1960)Google Scholar
  5. 5.
    Gottschalk, W.H.: Substitution minimal sets. Trans. Amer. math. Soc. 109, 467–491 (1963)Google Scholar
  6. 6.
    Kakutani, S.: Induced measure preserving transformations. Proc. Imp. Acad. Tokyo 19, 635–641 (1943)Google Scholar
  7. 7.
    Kamae, Teturo: A topological invariant of substitution minimal sets. J. math. Soc. Japan 24, 285–306 (1972)Google Scholar
  8. 8.
    Klein, Benjamin G.: Homomorphisms of symbolical dynamical systems. Math. Systems Theory 6, 107–122 (1972)Google Scholar
  9. 9.
    Martin, John C.: Substitution minimal flows. Amer. J. Math. 93, 503–526 (1971)Google Scholar
  10. 10.
    Martin, John C.: Minimal flows arising from substitutions of non-constant length. Math. Systems Theory 7, 73–82 (1973)Google Scholar
  11. 11.
    Michel, P.: Stricte ergodicité d'ensembles minimaux de substitutions. C.R. Acad. Sci. Paris Sér A-B 278, 811–813 (1974)Google Scholar
  12. 12.
    Michel, P.: Coincidence values and spectra of substitutions. Preprint 1977Google Scholar
  13. 13.
    Petersen, K., Shapiro, L.: Induced flows. Trans. Amer. math. Soc. 177, 375–389 (1973)Google Scholar
  14. 14.
    van der Waerden, B.L.: Modern algebra. Vol. 1, 2nd ed. New York: Frederick Ungar 1949Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • F. M. Dekking
    • 1
  1. 1.Laboratoire de ProbabilitésE.R.A. 250 du C.N.R.S.Rennes Cédex

Personalised recommendations