Invariance principles for sums of Banach space valued random elements and empirical processes

  • R. M. Dudley
  • Walter Philipp
Article

Summary

Almost sure and probability invariance principles are established for sums of independent not necessarily measurable random elements with values in a not necessarily separable Banach space. It is then shown that empirical processes readily fit into this general framework. Thus we bypass the problems of measurability and topology characteristic for the previous theory of weak convergence of empirical processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acosta, Alejandro de: Existence and convergence of probability measures in Banach spaces. Trans. Amer. Math. Soc. 152, 273–298 (1970)Google Scholar
  2. 2.
    Berkes, István, Morrow, G.: Strong invariance principles for mixing random fields. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 15–37 (1981)Google Scholar
  3. 3.
    Berkes, I., Philipp, Walter: An almost sure invariance principle for the empirical distribution function of mixing random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 41, 115–137 (1977)Google Scholar
  4. 4.
    Berkes, I., Philipp, Walter: Approximation theorems for independent and weakly dependent random vectors. Ann. Probability 7, 29–54 (1979)Google Scholar
  5. 5.
    Billingsley, Patrick: Convergence of Probability Measures. New York: Wiley 1968Google Scholar
  6. 6.
    Borisov, I.S.: Some limit theorems for empirical distributions. Abstracts of Reports. Third Vilnius Conf. Probability. Theory Math. Statist. I, 71–72 (1981)Google Scholar
  7. 7.
    Bourbaki, N.: Eléments de math. Première partie, livre VI, Intégration. Paris: Hermann 1959Google Scholar
  8. 8.
    Breiman, Leo: Probability. Reading Mass.: Addison-Wesley 1968Google Scholar
  9. 9.
    Bronštein, E.M.: ε-entropy of convex sets and functions. Siberian Math. J. 17, 393–398 (transl. from Sibirsk. Mat. Ž. 17, 508–514) (1976)Google Scholar
  10. 10.
    Dehling, Herold: Limit theorems for sums of weakly dependent Banach space valued random variables. Z. Wahrscheinlichkeitstheorie verw. Geb., to appear (1983)Google Scholar
  11. 11.
    Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Th. 10, 227–236 (1974); Correction, ibid. 26, 192–193 (1979)Google Scholar
  12. 12.
    Dudley, R.M.: Central limit theorems for empirical measures. Ann. Probability 6, 899–929 (1978); Correction, ibid. 7, 909–911 (1979)Google Scholar
  13. 13.
    Dudley, R.M.: Lower layers in ℝ2 and convex sets in ℝ3 are not GB classes. Probability in Banach Spaces II (Proc. Conf. Oberwolfach, 1978). Lecture Notes in Math. 709, 97–102. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  14. 14.
    Dudley, R.M.: Donsker classes of functions, Statistics and Related Topics (Proc. Symp. Ottawa, 1980), pages 341–352. New York Amsterdam: North-Holland 1981Google Scholar
  15. 15.
    Dudley, R.M.: Vapnik-Červonenkis Donsker classes of functions. Aspects statistiques et aspects physiques des processus gaussiens (Proc. Colloque C.N.R.S. St.-Flour, 1980), C.N.R.S., Paris, 251–269 (1981b)Google Scholar
  16. 16.
    Durst, Mark, Dudley, R.: Empirical processes, Vapnik-Chervonenkis classes and Poisson processes. Probability and Mathematical Statistics (Wrocław) 1, 109–115 (1981)Google Scholar
  17. 17.
    Eames, W., May, L.E.: Measurable cover functions. Canad. Math. Bull. 10, 519–523 (1967)Google Scholar
  18. 18.
    Enflo, Per: A counterexample to the approximation problem in Banach spaces. Acta Math. 130, 309–317 (1973)Google Scholar
  19. 19.
    Fernique, Xavier: Intégrabilité des vecteurs gaussiens. C.R. Acad. Sci. Paris Sér. A 270, A1698–1699 (1970)Google Scholar
  20. 20.
    Fernique, X.: Régularité de processus gaussiens. Invent. Math. 12, 304–320 (1971)Google Scholar
  21. 21.
    Freedman, D.: Brownian motion and diffusion. San Francisco; Holden-Day 1971Google Scholar
  22. 22.
    Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables (transl. K.L. Chung). Reading, Mass.: Addison-Wesley 1949, 1954, 1968Google Scholar
  23. 23.
    Goodman, Victor, Kuelbs, James, Zinn, Joel: Some results on the LIL in Banach space with applications to weighted empirical processes. Ann. Probability 9, 713–752 (1981)Google Scholar
  24. 24.
    Hartman, Philip, Wintner, Aurel: On the law of the iterated logarithm. Amer. J. Math. 63, 169–176 (1941)Google Scholar
  25. 25.
    Heinkel, B.: Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach. Z. Wahrscheinlichkeitstheorie verw. Geb. 49, 211–220 (1979)Google Scholar
  26. 26.
    Hoffmann-Jørgensen, J.: Sums of independent Banach space valued random variables. Studia Math. 52, 159–186 (1974)Google Scholar
  27. 27.
    Ibero, M.: Approximation forte du processus empirique fonctionnel multidimensionnel. Bull. Sci. Math. 103, 409–422 (1979a)Google Scholar
  28. 28.
    Ibero, M.: Intégrale stochastique par rapport au processus empirique multidimensionnel. C.R. Acad. Sci. Paris Sér. A 288, A165–168 (1979b)Google Scholar
  29. 29.
    Ionescu Tulcea, A., and Ionescu Tulcea, C.: On the lifting property I. J. Math. Anal. Appl. 3, 537–546 (1961)Google Scholar
  30. 30.
    Ionescu Tulcea, A. and Ionescu Tulcea, C.: On the lifting property II: Representation of linear operators on spaces 550-01, 1≦r<∞. J. Math. Mech. (Indiana) 11, 773–795 (1962)Google Scholar
  31. 31.
    Jain, N.C., Marcus, M.B.: Integrability of infinite sums of independent vector-valued random variables. Trans. Amer. Math. Soc. 212, 1–36 (1975)Google Scholar
  32. 32.
    Jain, N.C.: Central limit theorem in a Banach space, Probability in Banach Spaces (Proc. Conf. Oberwolfach, 1975). Lecture Notes in Math. 526, 113–130. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  33. 33.
    Jain, N.C.: An example concerning CLT and LIL in Banach space. Ann. Probability 4, 690–694 (1976b)Google Scholar
  34. 34.
    James, B.R.: A functional law of the iterated logarithm for weighted empirical distributions. Ann. Probability 3, 762–772 (1975)Google Scholar
  35. 35.
    Kahane, J.-P.: Some random series of functions. Lexington, Mass.: D.C. Heath 1968Google Scholar
  36. 36.
    Kiefer, J.: Skorohod embedding of multivariate rv's, and the sample df. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 1–35 (1972)Google Scholar
  37. 37.
    Kolčinski, V.I.: On the central limit theorem for empirical measures. Teor. Verojatnost. i. Mat. Statist. (Kiev) 1981, no. 24, 63–75 (in Russian). Theory Probability and Math. Statist. no. 24, 71–82 (1981a)Google Scholar
  38. 38.
    Kolčinski, V.I.: On the law of the iterated logarithm in Strassen's form for empirical measures. Teor. Verojatnost. i. Mat. Statist. (Kiev) 1981, no. 25, 40–47. Theory Probability and Math. Statist. no. 25, 43–50 (1981b)Google Scholar
  39. 39.
    Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent RV′−s, and the sample DF. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32, 111–131 (1975)Google Scholar
  40. 40.
    Kuelbs, J.: A strong convergence theorem for Banach space valued random variables. Ann. Probability 4, 744–771 (1976)Google Scholar
  41. 41.
    Kuelbs, J.: Kolmogorov's law of the iterated logarithm for Banach space valued random variables. Illinois J. Math. 21, 784–800 (1977)Google Scholar
  42. 42.
    Kuelbs, J., Zinn, J.: Some stability results for vector valued random variables. Ann. Probability 7, 75–84 (1979)Google Scholar
  43. 43.
    Kuelbs, J., Dudley, R.M.: Log log laws for empirical measures. Ann. Probability 8, 405–418 (1980)Google Scholar
  44. 44.
    Kuelbs, J., Philipp, Walter: Almost sure invariance principles for partial sums of mixing B- valued random variables. Ann. Probability 8, 1003–1036 (1980)Google Scholar
  45. 45.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  46. 46.
    Major, Péter: Approximation of partial sums of i.i.d. rv's when the summands have only two moments. Z. Wahrscheinlichkeitstheorie verw. Geb. 35, 221–229 (1976)Google Scholar
  47. 47.
    Marcus, Michael, B., Philipp, Walter: Almost sure invariance principles for sums of B-valued random variables with applications to random Fourier series and the empirical characteristic process. Trans. Amer. Math. Soc. 269, 67–90 (1982)Google Scholar
  48. 48.
    Marcus, M.B., Shepp, L.A.: Sample behavior of Gaussian processes. Proc. 6th Berkeley Sympos. Math. Statist. Probab. 2, 423–442. Univ. Calif. Press (1971)Google Scholar
  49. 49.
    May, L.E.: Separation of functions. Canad. Math. Bull. 16, 245–250 (1973)Google Scholar
  50. 50.
    O'Reilly, Neville E.: On the convergence of empirical processes in sup-norm metrics. Ann. Probability 2, 642–651 (1974)Google Scholar
  51. 51.
    Parthasarathy, K.R.: Probability measures on metric spaces. New York: Academic Press 1967Google Scholar
  52. 52.
    Philipp, Walter: Almost sure invariance principles for sums of B-valued random variables, Probability in Banach Spaces II (Proc. Conf. Oberwolfach, 1978). Lecture Notes in Math. 709, 171–193. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  53. 53.
    Philipp, Walter: Weak and L p-invariance principles for sums of B-valued random variables. Ann. Probability 8, 68–82 (1980); Correction, ibid. (to appear)Google Scholar
  54. 54.
    Philipp, Walter, Pinzur, Laurence: Almost sure approximation theorems for the multivariate empirical process. Z. Wahrscheinlichkeitstheorie verw. Geb. 54, 1–13 (1980)Google Scholar
  55. 55.
    Pisier, G.: Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwartz 1975–76, Exposé IV, École Polytechnique, Paris (1975)Google Scholar
  56. 56a.
    Pollard, D.: Limit theorems for empirical processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 181–195 (1981)Google Scholar
  57. 56b.
    Pollard, D.: A central limit theorem for empirical processes. [To appear in J. Australian Math. Soc. Ser. A]Google Scholar
  58. 57.
    Prohorov, Yu.V.: Convergence of random processes and limit theorems in probability theory. Theor. Probability Appl. 1, 157–214 (1956)Google Scholar
  59. 58.
    Révész, Pál: On strong approximation of the multidimensional empirical process. Ann. Probability 4, 729–743 (1976)Google Scholar
  60. 59.
    Senatov, V.V.: Some estimates of the rate of convergence in the multidimensional central limit theorem. Soviet Math. Doklady 22, 462–466=Dokl. Akad. Nauk SSSR 254 no. 4, 809–812 (1980)Google Scholar
  61. 60.
    Shortt, R.M.: Existence of laws with given marginals and specified support. Ph.D. thesis, M.I.T. (1982)Google Scholar
  62. 61.
    Skorohod, A.V.: Limit theorems for stochastic processes. Theor. Probability Appl. 1, 261–290 (1956)Google Scholar
  63. 62.
    Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423–439 (1965)Google Scholar
  64. 63.
    Vorob'ev, N.N.: Consistent families of measures and their extensions. Theor. Probability Appl. 7, 147–163 (1962)Google Scholar
  65. 64.
    Vulikh, B.Z.: Introduction to the theory of partially ordered spaces (transl. by L.F. Boron). Gröningen: Walters-Noordhoff 1967Google Scholar
  66. 65.
    Wenocur, R.S., Dudley, R.M.: Some special Vapnik-Chervonenkis classes. Discrete Math. 33, 313–318 (1981)Google Scholar
  67. 66.
    Yurinskii, V.V.: On the error of the Gaussian approximation for convolutions. Theor. Probability Appl. 22, 236–247 (1977)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. M. Dudley
    • 1
  • Walter Philipp
    • 2
  1. 1.M.I.T.CambridgeUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations