Naturality, standardness, and weak duality for Markov processes

  • R. K. Getoor
  • M. J. Sharpe


Markov Process Random Measure Standard Process Borel Function Finite Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, B.: Generalized strong Markov properties and applications. Z. Wahrscheinlich- keitstheorie Verw. Geb. 60, 71–78 (1982)CrossRefzbMATHGoogle Scholar
  2. 2.
    Atkinson, B., Mitro, J.: Applications of Revuz and Palm type measures for additive functionals in weak duality. Seminar on Stochastic Processes 1982, 23–50. Boston: Birkhäuser 1983Google Scholar
  3. 3.
    Azéma, J.: Théorie générale des processus et retournement du temps. Ann. Sci. de l'Ecole Norm. Sup. 6, 459–519 (1973)zbMATHGoogle Scholar
  4. 4.
    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York: Academic Press 1968zbMATHGoogle Scholar
  5. 5.
    Blumenthal, R.M., Getoor, R.K.: Dual processes and potential theory. Proc. 12th Bienial Seminar of the Canadian Math. Congress. Canadian Math. Soc. (1970)Google Scholar
  6. 6.
    Chung, K.L.: Probability approach to the equilibrium problem in potential theory. Ann. Inst. Fourier 23, 313–322 (1973)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chung, K.L., Walsh, J.B.: Meyer's theorem on predictability. Z. Wahrscheinlichkeitstheorie Verw. Geb. 29, 253–256 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cinlar, E., Jacod, J., Protter, P., Sharpe, M.: Semimartingales and Markov processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 54, 161–219 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dellacherie, C.: Capacités et Processes Stochastiques. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  10. 10.
    Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel. Paris: Herman 1975zbMATHGoogle Scholar
  11. 11.
    Dynkin, E.B.: Green's and Dirichlet spaces for a symmetric Markov transition function. Lecture Notes Lond. Math. Soc. 1982Google Scholar
  12. 12.
    Dynkin, E.B.: Green's and Dirichlet spaces associated with fine Markov processes. J. Funct. Anal. 47, 381–418 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fukushima, M.: Dirichlet Forms and Markov Processes. Amsterdam: North Holland 1980zbMATHGoogle Scholar
  14. 14.
    Getoor, R.K.: Multiplicative functionals of dual processes. Ann. Inst. Fourier 21, 43–83 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Getoor, R.K.: Duality of Lévy Systems, Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 257–270 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Getoor, R.K.: Markov Processes: Ray Processes and Right Processes. Springer Lecture Notes 440. Berlin-Heidelberg-New York: Springer-Verlag 1975Google Scholar
  17. 17.
    Getoor, R.K., Sharpe, M.J.: Last exit times and additive functionals. Ann. Probability 1, 550–569 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Getoor, R.K., Sharpe, M.J.: Balayage and multiplicative functionals. Z. Wahrscheinlichkeitstheorie verw. Geb. 28, 139–164 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Getoor, R.K., Sharpe, M.J.: Excursions of dual processes. Advances in Math. 45, 259–309 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Getoor, R.K., Sharpe, M.J.: Two results on dual excursions. In Seminar on Stochastic Processes. 31–52. Boston-Basel-Stuttgart: Birkhäuser 1982Google Scholar
  21. 21.
    Glover, J.: Compactifications for dual processes. Ann. Probability 8, 1119–1135 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hunt, G.A.: Markov processes and potentials I, II, III. Ill. J. Math. 1, 44–93 and 316–369 (1957), 2, 151–213 (1958)zbMATHGoogle Scholar
  23. 23.
    Kuznetsov, S.E.: Construction of a regular split process. Theor. Probability Appl. 22, 773–793 (1977)CrossRefzbMATHGoogle Scholar
  24. 24.
    Le Jan, Y.: Dual Markovian semigroups and processes. In Functional Analysis in Markov Processes. Springer Lecture Notes 923, pp. 47–75. Berlin-Heidelberg-New York: Springer 1982CrossRefGoogle Scholar
  25. 25.
    Meyer, P.A.: Fonctionelles multiplicatives et additives de Markov. Ann. Inst. Fourier 12, 125–230 (1962)CrossRefzbMATHGoogle Scholar
  26. 26.
    Meyer, P.A.: Processus de Markov. Lecture Notes in Mathematics 26. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  27. 27.
    Meyer, P.A.: Martingales locales fonctionnelles additives I. Lecture Notes in Math. 649, 775–785. Berlin-Heidelberg-New York: Springer-Verlag 1978Google Scholar
  28. 28.
    Meyer, P.A.: Note sur l'interpretation des mesures d'équilibre. Lecture Notes in Math. 321, Heidelberg: Springer-Verlag 1973Google Scholar
  29. 29.
    Mitro, J.B.: Dual Markov processes: construction of a useful auxiliary process, Z. Wahrscheinlichkeitstheorie verw. Geb. 47, 139–156 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mitro, J.B.: Dual Markov processes: applications of a useful auxiliary process. Z. Wahrscheinlichkeitstheorie verw. Geb. 48, 97–114 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mitro, J.: Exit systems for dual Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 66, 259–267 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nagasawa, M.: Time reversions of Markov processes. Nagoya Math. J. 24, 177–204 (1964)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Pitman, J. W.: Lévy systems and path decompositions. In Seminar on Stochastic Processes. 79–110. Boston-Basel-Stuttgart: Birkhäuser 1982Google Scholar
  34. 34.
    Port, S., Stone, C.: Infinitely divisible processes and their potential theory. Ann. Inst. Fourier 21, (2), 157–275 and (4), 179–265 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Revuz, D.: Mesures associées aux fonctionelles additives de Markov I. Trans. Amer. Math. Soc. 148, 501–531 (1970)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Revuz, D.: Mesures associées aux fonctionelles additive de Markov II. Z. Wahrscheinlichkeitstheorie verw. Geb. 16, 336–344 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sharpe, M.J.: Discontinuous additive functionals of dual processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 21, 81–95 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sharpe, M.J.: Exact multiplicative functionals in duality. Indiana Univ. Math. J. 21, 27–60 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sharpe, M.J.: General Theory of Markov Processes. (Forthcoming book)Google Scholar
  40. 40.
    Sharpe, M.J.: Homogeneous extensions of random measures. Lecture Notes 465. 496–514. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  41. 41.
    Sharpe, M.J.: Some transformations of diffusions by time reversal. Ann. Probability 8, 1157–1162 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Silverstein, M.L.: Boundary Theory for Symmetric Markov Processes. Lecture Notes in Mathematics 516. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  43. 43.
    Smythe, R.T.: Remarks on the hypotheses of duality. Lecture Notes in Mathematics 381. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  44. 44.
    Smythe, R.T., Walsh, J.B.: The existence of dual processes. Invent. Math. 19, 113–148 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Walsh, J.B., Meyer, P.A.: Quelques applications des resolventes de Ray. Invent. Math. 14, 143–166 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Walsh, J.B.: The perfection of multiplicative functionals. Lecture Notes in Math. 258, 233–242. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  47. 47.
    Walsh, J.B.: Markov processes and their functionals in duality. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 229–246 (1972)CrossRefzbMATHGoogle Scholar
  48. 48.
    Weil, M.: Propriétés de continuité fine des fonctions coexcessives. Z. Wahrscheinlichkeitstheorie verw. Geb. 12, 75–86 (1969)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. K. Getoor
    • 1
  • M. J. Sharpe
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations