Amenability: A survey for statistical applications of hunt-stein and related conditions on groups

  • James V. Bondar
  • Paul Milnes


A number of conditions on groups have appeared in the literature of invariant statistical models in connection with minimaxity, approximation of invariant Bayes priors by proper priors, the relationship between Bayesian and classical inference, ergodic theorems, and other matters. In the last decade, rapid development has occurred in the field and many of these conditions are now known to be equivalent. We survey the subject, make the equivalences explicit, and list some groups of statistical interest which do, and also some which do not, have these properties. In particular, it is shown that the existence of the asymptotically invariant sequence of probabilities in the hypothesis of the Hunt-Stein theorem is equivalent to amenability, a condition that has been much studied by functional analysts.


Statistical Model Stochastic Process Probability Theory Rapid Development Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, C., Christensen, J.P.R.: Sur la norme des opérateurs de convolution. Inventiones math. 23, 173–178 (1974)Google Scholar
  2. Berk, R.H.: A special structure and equivariant estimation. Ann. Math. Statist. 38, 1436–1445 (1967)Google Scholar
  3. Berk, R.H.: A remark on almost invariance. Ann. Math. Statist. 41, 733–735 (1970)Google Scholar
  4. Berk, R.H., Bickel, P.: On invariance and almost invariance. Ann. Math. Statist. 39, 1573–1576 (1968)Google Scholar
  5. Bondar, J.: On Borel cross-sections and maximal invariants. Ann. Statist. 4, 866–877 (1976)Google Scholar
  6. Bondar, J.: On a conditional confidence property. Ann. Statist. 5, 881–891 (1977)Google Scholar
  7. Bondar, J., Milnes, P.: A converse to the Hunt-Stein theorem. Submitted to Ann. Statist (1977)Google Scholar
  8. Brown, L.: A Hunt-Stein theorem (manuscript 1980)Google Scholar
  9. Chou, C.: On topologically invariant means on a locally compact group. Trans. Amer. Math. Soc. 151, 443–456 (1970)Google Scholar
  10. Chou, C.: The exact cardinality of the set of invariant means on a group. Proc. Amer. Math. Soc. 55, 103–106 (1976)Google Scholar
  11. Chou, C.: Elementary amenable groups. Illinois J. Math. 24, 396–407 (1980)Google Scholar
  12. Day, M.M.: Amenable semigroups. Illinois J. Math. 1, 509–544 (1957)Google Scholar
  13. Day, M.M.: Fixed-point theorems for compact convex sets. Illinois J. Math. 5, 585–589 (1961) and Correction. Illinois J. Math. 8, 713 (1964)Google Scholar
  14. Day, M.M.: Amenability and equicontinuity. Studia Math. 31, 481–494 (1968)Google Scholar
  15. Day, M.M.: Semigroups and amenability. In Semigroups, Proceedings of a Symposium at Wayne State University, K.W. Folley (ed.) 5–53. New York-London: Academic Press 1969Google Scholar
  16. Dixmier, J: Les C*-algèbres et leurs représentations. Hermann. Paris (1964)Google Scholar
  17. Dunford, N., Schwartz, J.T.: Linear Operators I. New York: Interscience 1958Google Scholar
  18. Eberlein, W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Amer. Math. Soc. 67, 217–240 (1949)Google Scholar
  19. Emerson, W.: Ratio properties in locally compact amenable groups. Trans. Amer. Math. Soc. 133, 179–204 (1968)Google Scholar
  20. Emerson, W.: Large symmetric sets in amenable groups and the individual ergodic theorem. Amer. J. Math. 96, 242–247 (1974a)Google Scholar
  21. Emerson, W.: The pointwise ergodic theorem for amenable groups. Amer. J. Math. 96, 472–487 (1974b)Google Scholar
  22. Emerson, W.: Characterizations of amenable groups. Trans. Amer. Math. Soc. 241, 183–194 (1978)Google Scholar
  23. Emerson, W.: The Hausdorff paradox for general group actions. J. Functional Anal. 32, 213–227 (1979)Google Scholar
  24. Emerson, W., Greenleaf, F.: Covering properties and Følner conditions for locally compact groups. Math. Z. 102, 370–384 (1967)Google Scholar
  25. Eymard, P.: Moyennes Invariantes et Représentations Unitaires. Lecture notes in mathematics no. 300. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  26. Eymard, P.: Inititation à la théorie des groupes moyennables. In: Analyse harmonique sur les groupes de Lie. (Eymard et al., eds.) 89–107. Lectures notes in mathematics no. 497. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  27. Furstenberg, H.: A Poisson formula for semi-simple Lie groups. Ann. Math. 77, 335–386 (1963)Google Scholar
  28. Gilbert, J.E.: Convolution operators on L P (G) and properties of locally compact groups. Pacific J. Math. 24, 257–268 (1968)Google Scholar
  29. Glasner, S.: Proximal Flows. Lecture notes in mathematics no. 517. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  30. Greenleaf, F.: Invariant Means on Topological Groups. Van Nostrand math. studies series, no. 16. New York: Van Nostrand 1969Google Scholar
  31. Greenleaf, F.: Amenable actions of locally compact groups. J. Functional Anal. 4, 295–315 (1969a)Google Scholar
  32. Greenleaf, F.: Ergodic theorems and the construction of summing sequences in amenable locally compact groups. Comm. Pure Appl. Math. 26, 29–46 (1973)Google Scholar
  33. Greenleaf, F., Emerson, W.: Group structure and the pointwise ergodic theorem for connected amenable groups. Advances in Math. 14, 153–172 (1974)Google Scholar
  34. Grenander, U.: Probabilities on Algebraic Structures. New York: Wiley 1963Google Scholar
  35. Guivarc'h, Y.: Croissance polynomiale et périodes des fonctions harmoniques. Bull. Soc. math. France. 101, 333–379 (1973)Google Scholar
  36. Heath, D., Sudderth, W.: On finitely additive priors, coherence and extended admissibility. Ann. Statist. 6, 333–345 (1978)Google Scholar
  37. Herz, C.: Harmonic synthesis for subgroups. Ann. Inst. Fourier Grenoble. 23, 91–123 (1973)Google Scholar
  38. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I. Berlin-Heidelberg-New York: Springer 1963Google Scholar
  39. Hulanicki. A.: Means and Følner conditions on locally compact groups. Studia Math. 27, 87–104 (1966)Google Scholar
  40. Iwasawa, K.: On some types of topological groups. Ann. Math. 50, 507–557 (1949)Google Scholar
  41. Jenkins, J.W.: Growth of connected locally compact groups. J. Functional Anal. 12, 113–127 (1973)Google Scholar
  42. Johnson, B.E.: Cohomology in Banach Algebras. Amer. Mat. Soc. Memoir no. 127 (1972)Google Scholar
  43. Johnson, B.E.: Perturbations of Banach algebras. Proc. London Math. Soc. (3) 34, 439–458 (1977)Google Scholar
  44. Kakutani, S.: Two fixed-point theorems concerning bicompact convex sets. Proc. Imp. Acad. Tokyo 14, 242–245 (1938)Google Scholar
  45. Kesten, H.: Full Banach mean values on countable groups. Math. Scand. 7, 146–156 (1959)Google Scholar
  46. Kiefer, J.: Invariance, minimax sequential estimation and continuous time processes. Ann. Math. Statist. 28, 573–601 (1957)Google Scholar
  47. Kiefer, J.: Multivariate optimality results, pp. 255–274 in Multivariate Analysis: Proceedings of the First International Symposium on Multivariate Analysis (Dayton, 1965). P. Krishnaiah (ed.). New York: Academic Press 1966Google Scholar
  48. Lance, C.: On nuclear C *-algebras. J. Functional Anal. 12, 157–176 (1973)Google Scholar
  49. Lane, D., Sudderth, W.: Diffuse models for sampling and predictive inference. Ann. Statist. 6, 1318–1336 (1978)Google Scholar
  50. Lau, A.: Action of topological semigroups, invariant means and fixed points. Studia Math. 43, 139–156 (1972)Google Scholar
  51. Le Cam, L.: Sufficiency and approximate sufficiency. Ann. Math. Statist. 35, 1419–1455 (1964)Google Scholar
  52. Le Cam, L.: On the information contained in additional observations. Ann. Statist. 2, 630–649 (1974)Google Scholar
  53. Lehmann, E.: Optimum invariant tests. Ann. Math. Statist. 30, 881–884 (1959a)Google Scholar
  54. Lehmann, E.: Testing Statistical Hypotheses. New York: Wiley 1959Google Scholar
  55. Markov, A.: Quelques théorèmes sur les ensembles abéliens. Doklady Akad. Nauk SSSR (N.S.) 10, 311–314 (1936)Google Scholar
  56. Milnes, P.: Left mean-ergodicity, fixed points and invariant means. J. Math. Anal. Appl. 65, 32–43 (1978)Google Scholar
  57. Milnes, P., Bondar, J.: A simple proof of a covering property of locally compact groups. Proc. Amer. Math. Soc. 73, 117–188 (1979)Google Scholar
  58. Nachbin, L.: The Haar Integral. Reprinted edition. New York: Krieger-Huntington 1965Google Scholar
  59. von Neumann, J.: Zur allgemeinen Theorie des Maßes. Fund. Math. 13, 73–116 (1929)Google Scholar
  60. Paschke, W.L.: Inner amenability and conjugation operators. Proc. Amer. Math. Soc. 71, 117–118 (1978)Google Scholar
  61. Peisakoff, M.: Transformation Parameters. Thesis. Princeton University 1950Google Scholar
  62. Portnoy, S.: Optimality of best invariant procedures. Mimeographed notes, 26 pp. (c. 1975)Google Scholar
  63. Reiter, H.: Sur la propriété (P 1) et les fonctions de type positif. C.R. Acad. Sci. Paris 258, 5134–5135 (1964)Google Scholar
  64. Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press 1968Google Scholar
  65. Rickert, N.W.: Amenable groups and groups with the fixed point property. Trans. Amer. Math. Soc. 127, 221–232 (1967)Google Scholar
  66. Rindler, H.: Approximierende Einheiten in Idealen von Gruppenalgebren. Anzeiger der Österreichischen Akademie der Wissenschaften 5, 37–39 (1976)Google Scholar
  67. Rosenblatt, J.M.: The number of extensions of an invariant mean. Compositio Math. 33, 147–159 (1976)Google Scholar
  68. Rosenblatt, J.M.: Invariant means on the continuous bounded functions. Trans. Amer. Math. Soc. 236, 315–324 (1978)Google Scholar
  69. Schwartz, J.: Two finite, non-hyperfinite, non-isomorphic factors. Comm. Pure Appl. Math. 16, 19–26 (1963)Google Scholar
  70. Sherman, J.: A new characterization of amenable groups. Trans. Amer. Math. Soc. 354, 365–391 (1979)Google Scholar
  71. Sine, R.: Sequential convergence to invariance in B(G). Proc. Amer. Math. Soc. 55, 313–317 (1976)Google Scholar
  72. Stein, C.: Approximation of improper prior measures by prior probability measures. Bernoulli-Bayes-Laplace Anniversary Volume (J. Neyman and L. Le Cam eds.) pp. 217–240. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  73. Stewart, J.: Positive definite functions and generalizations: an historical survey. Rocky Mountain Math. J. 6, 409–434 (1976)Google Scholar
  74. Stone, M.: Necessary and sufficient conditions for convergence in probability to invariant posterior distributions. Ann. Math. Statist. 41, 1349–1353 (1970)Google Scholar
  75. Stone, M.: Strong inconsistency from uniform priors (with discussion). J. Amer. Statist. Assoc. 71, 141–125 (1976)Google Scholar
  76. Stone, M., von Randow, R.: Statistically inspired conditions on the group structure of invariant experiments .... Z. Wahrscheinlichkeitstheorie und verw. Geb. 10, 70–80 (1968)Google Scholar
  77. Templeman, A.A.: Ergodic theorems for general dynamic systems. Dokl. Akad. Nauk SSSR. 176, 1213–1216 (1967)Google Scholar
  78. Tits, J.: Free subgroups in linear groups. J. of Algebra 20, 250–270 (1972)Google Scholar
  79. Torgersen, E.N.: Comparison of translation experiments. Ann. Math. Statist. 43, 1383–1399 (1972)Google Scholar
  80. Wesler, O.: Invariance theory and a modified minimax principle. Ann. Math. Statist. 30, 1–20 (1959)Google Scholar
  81. Zehnwirth, B.: Invariant least favorable distributions. Macquarie Univ. School of Economic Studies. Tech. Rep. No. 74 (1975)Google Scholar
  82. Zehnwirth, B.: W* compactness of the class of substatistical decision rules with applications to the generalized Hunt-Stein theorem. Macquarie Univ. School of Economic Studies. Tech. Rept. No. 135 (1977)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • James V. Bondar
    • 1
  • Paul Milnes
    • 1
  1. 1.Dept. of MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations