Advertisement

An estimate of the remainder in a combinatorial central limit theorem

  • E. Bolthausen
Article

Keywords

Conditional Distribution Rank Statistic Dependent Random Variable Concentration Inequality Standard Normal Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Does, R.J.M.M.: Berry-Esseen theorems for simple linear rank statistics. Ann. Probability 10, 982–991 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ho, S.T., Chen, L.H.Y.: An L p bound for the remainder in a combinatorial central limit theorem. Ann. Probability 6, 231–249 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hoeffding, W.: A combinatorial central limit theorem. Ann. Math. Statist. 22, 558–566 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Husková, Marie: The Berry-Esseen theorem for rank statistics. Comment. Math. Univ. Carolina, 20, 399–415 (1979)zbMATHGoogle Scholar
  5. 5.
    Motoo, M.: On the Hoeffding's combinatorial central limit theorem. Ann. Inst. Statist. Math. 8, 145–154 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Stein, Ch.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Sympos. Math. Statist. Probability 2, 583–602 (1972)Google Scholar
  7. 7.
    von Bahr, B.: Remainder term estimate in a combinatorial limit theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 131–139 (1976)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • E. Bolthausen
    • 1
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12

Personalised recommendations