Advertisement

L2 theory for the stochastic Ising model

  • R. A. Holley
  • D. W. Stroock
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dobrushin, R. L.: Gibbsian random fields for lattice systems with pairwise interactions. Functional Anal. Appl. 2, 292–302 (1968)Google Scholar
  2. 2.
    Glauber, R. J.: Time dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963)Google Scholar
  3. 3.
    Higuchi, Y., Shiga, T.: Some results on Markov processes of infinite lattice spin systems. J. Math. Kyota Univ. 15, 211–229 (1975)Google Scholar
  4. 4.
    Holley, R.: Recent results on the stochastic Ising model. Rocky Moantain J. Math. 4, 479–496 (1974)Google Scholar
  5. 5.
    Holley, R., Stroock, D.: A martingale approach to infinite systems of interacting processes. [To appear in Ann. Probab.]Google Scholar
  6. 6.
    Kaufman, B., Onsager, L.: Crystal Statistics III. Short range order in a binary Ising lattice. Phys. Rev. 76, 1244–1252 (1949)Google Scholar
  7. 7.
    Lebowitz, J. L.: Bounds on the correlation and analyticity properties of ferromagnetic Ising spin systems. In pressGoogle Scholar
  8. 8.
    Marinaro, M., Sewell, G. L.: Characterizations of phase transitions in Ising spin systems. Comm. Math. Phys. 24, 310–335 (1972)Google Scholar
  9. 9.
    Sullivan, W. G.: Mean square relaxation times for evolution of random fields. Comm. Math. Phys. 40, 249–258 (1975)Google Scholar
  10. 10.
    Sullivan, W. G.: A unified existence and ergodic theorem for Markov evaluation of random fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 47–56 (1974)Google Scholar
  11. 11.
    Sullivan, W. G.: Processes with infinitely many jumping particles. [To appear in Proc. Amer. Math. Soc.]Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. A. Holley
    • 1
  • D. W. Stroock
    • 1
  1. 1.Mathematics Dept.University of ColoradoBoulderUSA

Personalised recommendations