Weak convergence to fractional brownian motion and to the rosenblatt process

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968

    Google Scholar 

  2. 2.

    Davydov, Y.A.: The invariance principle for stationary processes. Theor. Probability Appl. 15, 487–498 (1970)

    Google Scholar 

  3. 3.

    de Haan, L.: On regular variation and its application to the weak convergence of sample extremes. Math. Centre Tracts 32, Math. Centre, Amsterdam (1970)

    Google Scholar 

  4. 4.

    Feller, W.: An Introduction to Probability Theory and its Applications 2. 2nd ed. New York: Wiley 1971

    Google Scholar 

  5. 5.

    Gisselquist, R.: A continuum of collision process limit theorems. Ann. Probability 1, 231–239 (1973)

    Google Scholar 

  6. 6.

    Lamperti, J.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62–78 (1962)

    Google Scholar 

  7. 7.

    Lukacs, E.: Characteristic Functions. 2nd ed. New York: Hafner 1970

    Google Scholar 

  8. 8.

    Mandelbrot, B.: Limit theorems on the self-normalized range for weakly and strongly dependent processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 271–285 (1975)

    Google Scholar 

  9. 9.

    Mandelbrot, B.: Statistical methodology for non-periodic cycles: from the covariance to R/S analysis. Ann. Econ. and Social Measurement 1, 259–290 (1972)

    Google Scholar 

  10. 10.

    Mandelbrot, B., McCamy, K.: On the secular pole motion and the Chandler wobble. Geophys. J. Roy. Astron. Soc. 21, 217–232 (1970)

    Google Scholar 

  11. 11.

    Mandelbrot, B., van Ness, J.W.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Google Scholar 

  12. 12.

    Mandelbrot, B., Wallis, J.R.: Noah, Joseph and Operational hydrology. Water Resources Research 4, 909–918 (1968)

    Google Scholar 

  13. 13.

    Mandelbrot, B., Wallis, J.R.: Robustness of the rescaled range and the measurement of the long run statistical dependence. Water Resources Research 5, 967–988 (1969)

    Google Scholar 

  14. 14.

    Rosenblatt, M.: Independence and dependence. Proc. 4th Berkeley Sympos. Math. Statist. Probab. pp. 411–443. Berkeley: Univ. Calif. Press 1961

    Google Scholar 

  15. 15.

    Rozanov, Y.A.: Stationary Random Processes. San Francisco: Holden-Day 1967

    Google Scholar 

  16. 16.

    Spitzer, F.: Uniform motion with elastic collision of an infinite particle system. J. Math. Mech. 18, 973–989 (1969)

    Google Scholar 

  17. 17.

    Sun, T.C.: Some further results on central limit theorems for non-linear functions of a normal stationary process. J. Math. Mech. 14, 71–85 (1965)

    Google Scholar 

  18. 18.

    Taqqu, M.: Note on evaluations of R/S for fractional noises and geophysical records. Water Resources Research 6, 349–350 (1970)

    Google Scholar 

  19. 19.

    Taqqu, M.: Limit theorems for sums of strongly dependent random variables. Ph.D. thesis, Columbia Univ. (1972)

Download references

Author information

Affiliations

Authors

Additional information

This paper was completed at the Weizmann Institute of Science (Israel). It formed part of the author's Ph.D. dissertation at Columbia University under Professor Benoit Mandelbrot and Professor Burton Singer. The research was partially supported by IBM Research Center, the National Bureau of Economic Research, the National Science Foundation and by the Office of Naval Research under contract No. N00014-67-A-0108-0018 at Columbia University.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taqqu, M.S. Weak convergence to fractional brownian motion and to the rosenblatt process. Z. Wahrscheinlichkeitstheorie verw Gebiete 31, 287–302 (1975). https://doi.org/10.1007/BF00532868

Download citation

Keywords

  • Stochastic Process
  • Brownian Motion
  • Probability Theory
  • Mathematical Biology
  • Weak Convergence