Advertisement

Limit theorems on the self-normalized range for weakly and strongly dependent processes

  • Benoit B. Mandelbrot
Article

AMS (MOS) subject classification (1970)

Primary 60F99 60G15 62M99 Secondary 86A05 86A10 90A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bickel, P.J., Wichura, M.J.: Convergence criteria for multi parameter stochastic processes and some applications. Ann. Math. Statist. 42, 1656–1670 (1971)Google Scholar
  2. 2.
    Billingsley, P.: Convergence of probability measures. New York: Wiley 1968Google Scholar
  3. 3.
    Cox, D. R., Miller, H.D.: The theory of stochastic processes. New York: Wiley 1965Google Scholar
  4. 4.
    Cramer, H., Leadbetter, M.R.: Stationary and related stochastic processes. New York: Wiley 1967Google Scholar
  5. 5.
    Darling, D.A.: The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73, 95–107 (1952)Google Scholar
  6. 6.
    Davydov, Yu. A.: The invariance principle for stationary processes (translated). Theor. Probability App. 15, 487–498 (1970)Google Scholar
  7. 7.
    Doob, J.L.: The Brownian movement and stochastic equations. Ann. of Math. 43, 351–369 (1942). Also in: N. Wax (ed.): Selected papers on noise and stochastic processes. 319–337 New York: Dover 1954Google Scholar
  8. 8.
    Feller, W.: The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist. 22, 427–432 (1951)Google Scholar
  9. 9.
    Feller, W.: An introduction to the theory of probability and its applications. Vol. 1, 3rd ed. New York: Wiley 1968Google Scholar
  10. 10.
    Feller, W.: An introduction to the theory of probability and its applications. Vol. 2, 2nd ed. New York: Wiley 1971Google Scholar
  11. 11.
    Gnedenko, B.V., Kolmogoroff, A.N.: Limit distributions for sums of independent random variables. Translated by K.L. Chung. Reading, Mass.: Addison Wesley 1954Google Scholar
  12. 12.
    Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Engineers 116, 770–808(1951)Google Scholar
  13. 13.
    Hurst, H.E.: Methods of using long-term storage in reservoirs. Proceedings of the Institution of Civil Engineers, Part I, 519–577 (1955)Google Scholar
  14. 14.
    Hurst, H.E., Black, R.P., Simaika, Y.M.: Long-term Storage: An Experimental Study. London: Constable 1965Google Scholar
  15. 15.
    Lamperti, J.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62–78 (1962)Google Scholar
  16. 16.
    Liggett, T.M.: An invariance principle for conditioned sums of independent random variables. J. Math. Mechanics 18, 559–570 (1968)Google Scholar
  17. 17.
    Lindvall, T.: Weak convergence of probability measures and random functions in the function space D[0, ∞). J. Appl. Probability 10, 109–121 (1973)Google Scholar
  18. 18.
    Logan, B. F., Mallows, C.L., Rice, S.O., Shepp, L.A.: Limit distributions of self normalized sums. Ann. Probability 1, 788–809 (1973)Google Scholar
  19. 19.
    Mandelbrot, B.: Une classe de processus homothétiques à soi; application à la loi climatologique de H.E. Hurst. Comptes Rendus de l'Académie des Sciences de Paris 260, 3274–3277 (1965)Google Scholar
  20. 20.
    Mandelbrot, B.: Forecasts of future prices, unbiased markets and martingale models. J. Bus. Univ. Chic. 39, 242–255 (1966)Google Scholar
  21. 21.
    Mandelbrot, B.: Long-run linearity, locally Gaussian processes, H spectra and infinite variance. International Economic Review 10, 82–111 (1969)Google Scholar
  22. 22.
    Mandelbrot, B.: Statistical dependence in prices and interest rates, read at the Second World Econometric Congress, Cambridge, UK., 1970Google Scholar
  23. 23.
    Mandelbrot, B.: Statistical methodology for non-periodic cycles: from the covariance to R/S analysis. Ann. Econom. Soc. Measurement 1, 259–290 (1972)Google Scholar
  24. 24.
    Mandelbrot, B., McCamy, K.: On the secular pole motion and the Chandler wobble. Geophys. J. 21, 217–232 (1970)Google Scholar
  25. 25.
    Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motion, fractional noises and applications. SIAM Review 10, 422–437 (1968)Google Scholar
  26. 26.
    Mandelbrot, B., Wallis, J.R.: Noah, Joseph and operational hydrology. Water Resourc. Res. 4, 909–918 (1968)Google Scholar
  27. 27.
    Mandelbrot, B., Wallis, J.R.: Computer experiments with fractional Gaussian noises. Water Resourc. Res. 5, 228–267 (1969)Google Scholar
  28. 28.
    Mandelbrot, B., Wallis, J.R.: Some long run properties of geophysical records. Water Resourc. Res. 5, 321–340 (1969)Google Scholar
  29. 29.
    Mandelbrot, B., Wallis, J.R.: Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resourc. Res. 5, 967–988 (1969)Google Scholar
  30. 30.
    Moran, P. A. P.: On the range of cumulative sums. Ann. Inst. Statist. Math. 16, 109 (1964)Google Scholar
  31. 31.
    Moran, P.A.P.: An introduction to probability theory. Oxford: Clarendon Press 1968Google Scholar
  32. 32.
    Rosenblatt, M.: Independence and dependence. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability 2, 431–443 (1960)Google Scholar
  33. 33.
    Skorohod, A. V.: Limit theorem of stochastic processes with independent increments (translated). Theor. Probability Appl. 2, 138–171 (1957)Google Scholar
  34. 34.
    Steiger, W.: A test of nonrandomness in stock price charges. In: P.H. Cootner (ed.). The Random Character of Stock Market Prices 253–261. Cambridge, Mass.: MIT Press 1964Google Scholar
  35. 35.
    Taqqu, M.: Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 287–302 (1975)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Benoit B. Mandelbrot
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations