Advertisement

Martingales and stochastic integrals for processes with a multi-dimensional parameter

  • Eugene Wong
  • Moshe Zakai
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Stochastic Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cairoli, R.: Une inegalité pour martingales à indices multiples et ses applications. Séminaire de Probabilitiés IV, Lecture Notes in Mathematics 124, 1–27. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  2. 2.
    Cairoli, R.: Sur une équation différentielle stochastique. Compte Rendus Acad. Sc. Paris 274 (June 12, 1972) Ser. A, 1739–1742Google Scholar
  3. 3.
    Cameron, R. H., Martin, W. T.: The orthogonal development of nonlinear functionals in a series of Fourier-Hermite functions. Ann. of Math. 48, 385–392 (1947)Google Scholar
  4. 4.
    Clark, J. M. C.: The representation of functionals of Brownian motion by stochastic integrals. Ann. Math. Statist, 41, 1282–1295 (1970)Google Scholar
  5. 5.
    Doléans-Dade, C., Meyer, P. A.: Intégrales stochastiques par rapport aux martingales locale. Séminaire de Probabilitiés IV, Lecture Notes in Mathematics, 124, 77–107. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  6. 6.
    Ito, K.: Multiple Wiener integral. J. Math. Soc. Japan 3, 157–169 (1951)Google Scholar
  7. 7.
    Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. J. 30, 209–245 (1967)Google Scholar
  8. 8.
    Park, W.J.: A multiparameter Gaussian process. Ann. Math. Statist. 4, 1582–1595 (1970)Google Scholar
  9. 9.
    Yeh, J.: Wiener measure in a space of functions of two variables. Trans. Amer. Math. Soc. 95, 443–450 (1960)Google Scholar
  10. 10.
    Yeh, J.: Cameron-Martin translation theorems in the Wiener space of functions of two variables. Trans. Amer. Math. Soc. 107, 409–420 (1963)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Eugene Wong
    • 1
    • 2
  • Moshe Zakai
    • 1
    • 2
  1. 1.Dept. of Electrical Engineering and Computer SciencesUniv. of CaliforniaBerkeleyUSA
  2. 2.TechnionHaifaIsrael

Personalised recommendations