Functional central limit theorems for processes with positive drift and their inverses

  • Wim Vervaat


Stochastic Process Probability Theory Limit Theorem Mathematical Biology Central Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahadur, R. R.: A note on quantiles in large samples. Ann. math. Statistics 37, 577–580 (1966).Google Scholar
  2. 2.
    Billingsley, P.: Convergence of probability measures. New York etc.: Wiley 1968.Google Scholar
  3. 3.
    Dudley, R. M.: Distances of probability measures and random variables. Ann. math. Statistics 39, 1563–1572 (1968).Google Scholar
  4. 4.
    Finkelstein, H.: The law of the iterated logarithm for empirical distributions. Ann. math. Statistics 42, 607–615 (1971).Google Scholar
  5. 5.
    Iglehart, D. L., Whitt, W.: The equivalence of functional central limit theorems for counting processes and associated partial sums. Ann. math. Statistics 42, 1372–1378 (1971).Google Scholar
  6. 6.
    Kiefer, J.: On Bahadur's representation of sample quantiles. Ann. math. Statistics 38, 1323–1342 (1967).Google Scholar
  7. 7.
    Prohorov, Ju. V.: Convergence of random processes and limit theorems in probability theory. Theor. Probab. Appl. 1, 157–214 (1956).Google Scholar
  8. 8.
    Pyke, R.: Applications of almost surely convergent constructions of weakly convergent processes. In: Probability and information theory, 187–200. Berlin: Springer 1969.Google Scholar
  9. 9.
    Skorohod, A. V.: Limit theorems for stochastic processes. Theor. Probab. Appl. 1, 261–290 (1956).Google Scholar
  10. 10.
    Stone, C.: Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. math. Soc. 14, 694–696 (1963).Google Scholar
  11. 11.
    Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeits-theorie verw. Gebiete 3, 211–226 (1964).Google Scholar
  12. 12.
    Tucker, H. G.: A graduate course in probability. New York and London: Academic Press 1967.Google Scholar
  13. 13.
    Whitt, W.: Weak convergence of probability measures on the function space D[0, ∞). Technical report. Department of Administrative Sciences, Yale University (1970).Google Scholar
  14. 14.
    Whitt, W.: Weak convergence of first passage time processes. J. Appl. Probab. 8, 417–422 (1971).Google Scholar
  15. 15.
    Wichura, M. J.: On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. math. Statistics 41, 284–291 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Wim Vervaat
    • 1
  1. 1.Institute for Applications of MathematicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations