Asymptotic normality in a generalized occupancy problem

  • Lars Holst


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barton, D. E., David, F. N.: Combinatorial chance. London: Griffin 1962.Google Scholar
  2. 2.
    Chistyakov, V. P.: On the calculation of the power of the test of empty boxes. Theor. Probab. Appl. 9, 648–653 (1964).Google Scholar
  3. 3.
    Fabius, J.: De poisson benadering voor der binomiale verdelning. Statistica Neederlandica 21, 287–289 (1967).Google Scholar
  4. 4.
    Feller, W.: An introduction to probability theory and its applications, vol. 1, 2nd ed. New York-London: John Wiley & Sons 1957.Google Scholar
  5. 5.
    Okamoto, M.: On a non-parametric test. Osaka math. J. 4, 77–85 (1952).Google Scholar
  6. 6.
    Rényi, A.: Three new proofs and a generalization of a theorem of Irving Weiss. Publ. math. Inst. Hungar. Acad. Sci, Ser. B 7, 203–214 (1962).Google Scholar
  7. 7.
    Rosén, B.: Asymptotic normality in a coupon collector's problem. Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 256–279 (1969).Google Scholar
  8. 8.
    Sevastyanov, B. A.: Convergence of the distribution of the number of empty boxes to gaussian and poisson processes in the classical ball problem. Theor. Probab. Appl. 12, 126–134 (1967).Google Scholar
  9. 9.
    Weiss, I.: Limiting distributions in some occupancy problems. Ann. math. Statistics 29, 878–884 (1958).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Lars Holst
    • 1
  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations