Vitesses maximales de décroissance des erreurs et tests optimaux associés

  • Lucien Birgé


Under reasonable conditions on Θ, both errors of the tests that the law of a sample of size n belongs to Θ, go to zero like exp[−αn] and exp[− βn]. We shall determine the best possible values for α and β and give a construction of sequences of tests for which the errors decrease with such an optimal rate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    Azencott, R.: Ecole d'Eté de Saint-Flour VIII. Lecture Notes in Mathematics n∘ 774. Berlin-Heidelberg-New York: Springer Verlag 1978Google Scholar
  2. 1.
    Bahadur, R.R.: Stochastic comparison of tests. Ann. Math. Statist. 31, 276–295 (1960)Google Scholar
  3. 2.
    Bahadur, R.R.: Some limit theorems in statistics. Regional conference series in applied mathematics 4. SIAM, J. appl. Math. Philadelphia (1971)Google Scholar
  4. 3.
    Brown, L.D.: Non-local asymptotic optimality of appropriate likelihood ratio tests. Ann. Math. Statist. 42, 1206–1240 (1971)Google Scholar
  5. 4.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations. Ann. Math. Statist. 23, 493–507 (1952)Google Scholar
  6. 5.
    Dacunha-Castelle, D.: Ecole d'Eté de Probabilités de Saint-Flour VII — Chapitre IX. Lecture Notes in Mathematics n∘ 678. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  7. 6.
    Kullback, S.: Information Theory and Statistics. New York: Dover Publications Inc. 1968Google Scholar
  8. 7.
    Tusnády, G.: On asymptotically optimal tests. Ann. Statist. 5, 385–393 (1977)Google Scholar
  9. 8.
    Tusnády, G.: Testing Statistical Hypothesis (An information theoretic approach). A paraître dans Selecta Statistica CanadianaGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Lucien Birgé
    • 1
  1. 1.UER de Mathématiques - E.R.A. C.N.R.S. 532Université Paris VIIParis Cedex 05France

Personalised recommendations