On the foundations of combinatorial theory I. Theory of Möbius Functions

  • Gian -Carlo Rota


Stochastic Process Probability Theory Mathematical Biology Combinatorial Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auslander, L., and H. M. Trent: Incidence matrices and linear graphs. J. Math. Mech. 8, 827–835 (1959).Google Scholar
  2. Bell, E. T.: Algebraic Arithmetic. New York: Amer. Math. Soc. (1927),Google Scholar
  3. —: Exponential polynomials. Ann. of Math., II. Ser. 35, 258–277 (1934).Google Scholar
  4. Berge, C.: Théorie des graphes et ses applications. Paris: Dounod 1958.Google Scholar
  5. Birkhoff, Garrett: Lattice Theory, third preliminary edition. Harvard University, 1963.Google Scholar
  6. - Lattice Theory, revised edition. American Mathematical Society, 1948.Google Scholar
  7. Birkhoff, G. D.: A determinant formula for the number of ways of coloring a map. Ann. of Math., II. Ser. 14, 42–46 (1913).Google Scholar
  8. —, and D. C. Lewis: Chromatic polynomials. Trans. Amer. math. Soc. 60, 355–451 (1946).Google Scholar
  9. Bleicher, M. N., and G. B. Preston: Abstract linear dependence relations. Publ. Math., Debrecen 8, 55–63 (1961).Google Scholar
  10. Bougayev, N. V.: Theory of numerical derivatives. Moscow, 1870–1873, pp. 1–222.Google Scholar
  11. Bruijn, N. G. De: Generalization of Polya's fundamental theorem in enumerative combinatorial analysis. Indagationes math. 21, 59–69 (1959).Google Scholar
  12. Chung, K.-L., and L. T. C. Hsu: A combinatorial formula with its application to the theory of probability of arbitrary events. Ann. math. Statistics 16, 91–95 (1945).Google Scholar
  13. Dedekind, R.: Gesammelte Mathematische Werke, volls. I–II–III. Hamburg: Deutsche Math. Verein. (1930).Google Scholar
  14. Delsarte, S.: Fonctions de Möbius sur les groupes abéliens finis. Ann. of Math., II. Ser. 49, 600–609 (1948).Google Scholar
  15. Dilworth, R. P.: Proof of a conjecture on finite modular lattices. Ann. of Math., II. Ser. 60, 359–364 (1954).Google Scholar
  16. Dirac, G. A.: On the four-color conjecture. Proc. London math. Society, III. Ser. 13, 193 to 218 (1963).Google Scholar
  17. Dowker, C. H.: Homology groups of relations. Ann. of Math., II. Ser. 56, 84–95 (1952).Google Scholar
  18. Dubreil-Jacotin, M.-L., L. Lesieur et R. Croisot: LeÇons sur la théorie des treilles des structures algebriques ordonnées et des treilles géometriques. Paris: Gauthier-Villars 1953.Google Scholar
  19. Eilenberg, S., and N. Steenrod: Foundations of algebraic topology. Princeton: University Press 1952.Google Scholar
  20. Fary, I.: On straight-line representation of planar graphs. Acta Sci. math. Szeged 11, 229–233 (1948).Google Scholar
  21. Feller, W.: An introduction to probability theory and its applications, second edition. New York: Wiley 1960.Google Scholar
  22. Franklin, P.: The four-color problem. Amer. J. Math. 44, 225–236 (1922).Google Scholar
  23. Fréchet, M.: Les probabilités associées à un système d'événements compatibles et dépendants. Actualitées scientifiques et industrielles, nos. 859 et 942. Paris: Hermann 1940 et 1943.Google Scholar
  24. Frontera Marqués, B.: Una función numérica en los retículos finitos que se anula para los retícules reducibles. Actas de la 2a, Reunión de matemáticos españoles. Zaragoza 103–111 1962.Google Scholar
  25. Frucht, R., and G.-C. Rota: La función de Möbius para el retículo di particiones de un conjunto finito. To appear in Scientia (Chile).Google Scholar
  26. Goldberg, K., M. S. Green and R. E. Nettleton: Dense subgraphs and connectivity. Canadian J. Math. 11 (1959).Google Scholar
  27. Golomb, S. W.: A mathematical theory of discrete classification. Fourth Symposium in Information Theory, London, 1961.Google Scholar
  28. Green, M. S., and R. E. Nettleton: Möbius function on the lattice of dense subgraphs. J. Res. nat. Bur. Standards 64B, 41–47 (1962).Google Scholar
  29. — —: Expression in terms of modular distribution functions for the entropy density in an infinite system. J. Chemical Physisc 29, 1365–1370 (1958).Google Scholar
  30. Hadwiger, H.: Eulers Charakteristik und kombinatorische Geometrie. J. reine angew. Math. 194, 101–110 (1955).Google Scholar
  31. Hall, Philip: A contribution to the theory of groups of prime power order. Proc. London math. Soc., II. Ser. 36, 39–95 (1932).Google Scholar
  32. - The Eulerian functions of a group. Quart. J. Math. Oxford Ser. 134–151, 1936.Google Scholar
  33. Harary, F.: Unsolved problems in the enumeration of graphs. Publ. math. Inst. Hungar. Acad. Sci. 5, 63–95 (1960).Google Scholar
  34. Hardy, G. H.: Ramanujan. Cambridge: University Press 1940.Google Scholar
  35. —, and E. M. Wright: An introduction to the theory of numbers. Oxford: University Press 1954.Google Scholar
  36. Hartmanis, J.: Lattice theory of generalized partitions. Canadian J. Math. 11, 97–106 (1959).Google Scholar
  37. Hille, E.: The inversion problems of Möbius. Duke math. J. 3, 549–568 (1937).Google Scholar
  38. Hsu, L. T. C.: Abstract theory of inversion of iterated summation. Duke math. J. 14, 465 to 473 (1947).Google Scholar
  39. —: On Romanov's device of orthogonalization. Sci. Rep. Nat. Tsing Hua Univ. 5, 1–12 (1948).Google Scholar
  40. —: Note on an abstract inversion principle. Proc. Edinburgh math. Soc. (2) 9, 71–73 (1954).Google Scholar
  41. Jackson, F. H.: Series connected with the enumeration of partitions. Proc. London math. Soc., II. Ser. 1, 63–88 (1904).Google Scholar
  42. —: The q-form of Taylor's theorem. Messenger of Mathematics 38, 57–61 (1909).Google Scholar
  43. Jónsson, B.: Lattice-theoretic approach to projective and affine geometry. Symposium on the Axiomatic Method. Amsterdam, North-Holland Publishing Company, 1959, 188–205.Google Scholar
  44. —, and A. Tarski: Direct decomposition of finite algebraic systems. Notre Dame Mathematical lectures, no. 5. Indiana: Notre Dame 1947.Google Scholar
  45. Kac, M., and J. C. Ward: A combinatorial solution of the two-dimensional Ising model. Phys. Review 88, 1332–1337 (1952).Google Scholar
  46. Kaplanski, I., and J. Riordan: The problème des ménages. Scripta math. 12, 113–124 (1946).Google Scholar
  47. Klee, V.: The Euler characteristic in combinatorial geometry. Amer. math. Monthly 70, 119–127 (1963).Google Scholar
  48. Lazarson, T.: The representation problem for independence functions. J. London math. Soc. 33, 21–25 (1958).Google Scholar
  49. MacLane, S.: A lattice formulation of transcendence degrees and p-bases. Duke math. J. 4, 455–468 (1938).Google Scholar
  50. MacMillan, B.: Absolutely monotone functions. Ann. of Math., II. Ser. 60, 467–501 (1954).Google Scholar
  51. Möbius, A. F.: über eine besondere Art von Umkehrung der Reihen. J. reine angew. Math. 9, 105–123 (1832).Google Scholar
  52. Ore, O.: Theory of graphs. Providence: American Mathematical Society 1962.Google Scholar
  53. Polya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta math. 68, 145–253 (1937).Google Scholar
  54. Rado, R.: Note on independence functions. Proc. London math. Soc., III. Ser. 7, 300–320 (1957).Google Scholar
  55. Read, R. C.: The enumeration of locally restricted graphs, I. J. London math. Soc. 34, 417 to 436 (1959).Google Scholar
  56. Redfield, J. H.: The theory of group-reduced distributions. Amer. J. Math. 49, 433–455 (1927).Google Scholar
  57. Revuz, André: Fonctions croissantes et mesures sur les espaces topologiques ordonnés. Ann. Inst. Fourier 6 187–268 (1955).Google Scholar
  58. Riordan, J.: An introduction to combinatorial analysis. New York: Wiley 1958.Google Scholar
  59. Romanov, N. P.: On a special orthonormal system and its connection with the theory of primes. Math. Sbornik, N. S. 16, 353–364 (1945).Google Scholar
  60. Rota, G.-C.: Combinatorial theory and Möbius functions. To appear in Amer. math. Monthly.Google Scholar
  61. - The number of partitions of a set. To appear in Amer. math. Monthly.Google Scholar
  62. Ryser, H. J.: Combinatorial Mathematics. Buffalo: Mathematical Association of America 1963.Google Scholar
  63. Schützenberger, M. P.: Contribution aux applications statistiques de la théorie de l'information. Publ. Inst. Stat. Univ. Paris, 3, 5–117 (1954).Google Scholar
  64. Tarski, A.: Ordinal algebras. Amsterdam: North-Holland Publishing Company 1956.Google Scholar
  65. Touchard, J.: Sur un problème de permutations. C. r. Acad. Sci., Paris, 198, 631–633 (1934).Google Scholar
  66. Tutte, W. T.: A contribution to the theory of chromatic polynomials. Canadian J. Math. 6, 80–91 (1953).Google Scholar
  67. —: A class of Abelian group. Canadian J. Math. 8, 13–28 (1956).Google Scholar
  68. —: A homotopy theorem for matroids, I. and II. Trans. Amer. math. Soc. 88, 144–140 (1958).Google Scholar
  69. —: Matroids and graphs. Trans. Amer. math. Soc. 90, 527–552 (1959).Google Scholar
  70. Ward, M.: The algebra of lattice functions. Duke math. J. 5, 357–371 (1939).Google Scholar
  71. Weisner, L.: Abstract theory of inversion of finite series. Trans. Amer. math. Soc. 38, 474–484 (1935).Google Scholar
  72. —: Some properties of prime-power groups. Trans. Amer. math. Soc. 38, 485–492 (1935).Google Scholar
  73. Whitney, H.: A logical expansion in mathematics. Bull. Amer. math. Soc. 38, 572–579 (1932).Google Scholar
  74. —: Characteristic functions and the algebra of logic. Ann. of Math., II. Ser. 34, 405–414 (1933).Google Scholar
  75. —: The abstract properties of linear dependence. Amer. J. Math. 57, 507–533 (1935).Google Scholar
  76. Wielandt, H.: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endliehen Gruppe. Math. Z. 73, 146–158 (1960).Google Scholar
  77. Wintner, A.: Eratosthenian Averages. Baltimore (privately printed) 1943.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Gian -Carlo Rota
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge 39

Personalised recommendations