An application of the central limit theorem for banach-space-valued random variables to the theory of random sets

  • Wolfgang Weil
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araujo, A., Giné, E.: The central limit theorem for real and Banach valued random variables. New York-Chichester-Brisbane-Toronto: Wiley 1980Google Scholar
  2. 2.
    Arrow, K.J., Hahn, F.H.: General competitive analysis. San Francisco: Holden-Day 1971Google Scholar
  3. 3.
    Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. Ann. Probability 5, 879–882 (1975)Google Scholar
  4. 4.
    Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)Google Scholar
  5. 5.
    Breiman, L.: Probability. Reading-Menlo Park-London-Don Mills: Addison-Wesley 1968Google Scholar
  6. 6.
    Cassels, J.W.S.: Measures of the non-convexity of sets and the Shapley-Folkman-Starr theorem. Math. Proc. Cambridge Philos. Soc. 78, 433–436 (1975)Google Scholar
  7. 7.
    Cressie, N.: A strong limit theorem for random sets. Adv. Appl. Prob. Suppl. 10, 36–46 (1978)Google Scholar
  8. 8.
    Cressie, N.: Random set limit theorems. Adv. Appl. Prob. 11, 281–282 (1979)Google Scholar
  9. 9.
    Cressie, N.: A central limit theorem for random sets. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 37–47 (1979)Google Scholar
  10. 10.
    Leichtweiß, K.: Konvexe Mengen. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  11. 11.
    Matheron, G.: Random sets and integral geometry. New York-London-Sydney-Toronto: Wiley 1975Google Scholar
  12. 12.
    Wegmann, R.: Einige Maßzahlen für nichtkonvexe Mengen. Arch. Math. 34, 69–74 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Wolfgang Weil
    • 1
  1. 1.Mathematisches Institut IIUniversität KarlsruheKarlsruhe 1Federal Republic of Germany

Personalised recommendations