Advertisement

An application of the central limit theorem for banach-space-valued random variables to the theory of random sets

  • Wolfgang Weil
Article

Keywords

Stochastic Process Probability Theory Limit Theorem Mathematical Biology Central Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araujo, A., Giné, E.: The central limit theorem for real and Banach valued random variables. New York-Chichester-Brisbane-Toronto: Wiley 1980Google Scholar
  2. 2.
    Arrow, K.J., Hahn, F.H.: General competitive analysis. San Francisco: Holden-Day 1971Google Scholar
  3. 3.
    Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. Ann. Probability 5, 879–882 (1975)Google Scholar
  4. 4.
    Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)Google Scholar
  5. 5.
    Breiman, L.: Probability. Reading-Menlo Park-London-Don Mills: Addison-Wesley 1968Google Scholar
  6. 6.
    Cassels, J.W.S.: Measures of the non-convexity of sets and the Shapley-Folkman-Starr theorem. Math. Proc. Cambridge Philos. Soc. 78, 433–436 (1975)Google Scholar
  7. 7.
    Cressie, N.: A strong limit theorem for random sets. Adv. Appl. Prob. Suppl. 10, 36–46 (1978)Google Scholar
  8. 8.
    Cressie, N.: Random set limit theorems. Adv. Appl. Prob. 11, 281–282 (1979)Google Scholar
  9. 9.
    Cressie, N.: A central limit theorem for random sets. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 37–47 (1979)Google Scholar
  10. 10.
    Leichtweiß, K.: Konvexe Mengen. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  11. 11.
    Matheron, G.: Random sets and integral geometry. New York-London-Sydney-Toronto: Wiley 1975Google Scholar
  12. 12.
    Wegmann, R.: Einige Maßzahlen für nichtkonvexe Mengen. Arch. Math. 34, 69–74 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Wolfgang Weil
    • 1
  1. 1.Mathematisches Institut IIUniversität KarlsruheKarlsruhe 1Federal Republic of Germany

Personalised recommendations