A sharpening of the inequality of Berry-Esseen

  • V. M. Zolotarev


Stochastic Process Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergström, H.: On the central limit theorem in the case of not equally distributed random variables. Skand. Aktuarietidskr. 33, 37–62 (1949).Google Scholar
  2. 2.
    Bekry, A. C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. math. Soc. 49, 122–136 (1941).Google Scholar
  3. 3.
    Esseen, C. G.: Fourier analysis of distribution functions. Acta math. 77, 1–125 (1945).Google Scholar
  4. 4.
    —: A moment inequality with an application to the central limit theorem. Skand. Aktuarietidskr. 3-4, 160–170 (1956).Google Scholar
  5. 5.
    Patnaik, P. B.: The non-central χ2 and F distributions and their applications. Biometrika 36, 202–232 (1949).Google Scholar
  6. 6.
    Takano, K.: A remark to a result of A. C. Berry. Res. Mem. Inst. statist. Math.9, 6 (1951).Google Scholar
  7. 7.
    Zolotarev, V. M.: An absolute estimate of the remainder in the central limit theorem. Teor. Verojatn. Primen 11, 108–119 (1966).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • V. M. Zolotarev
    • 1
  1. 1.Mathematical Steklov InstituteMoscowUSSR

Personalised recommendations