Advertisement

Zeitschrift für Krebsforschung

, Volume 74, Issue 4, pp 376–382 | Cite as

Synergismus der chemotherapeutischen Wirkung einer Kombination von Thymidin und Endoxan (Cyclophosphamid) beim Ehrlich-Ascites-Tumor

  • H. Osswald
Article

Zusammenfassung

Beim Ehrlich-Ascites-Tumor bewirkte die vorhergehende Thymidingabe eine überadditive Wirkung von Endoxan (Cyclophosphamid), wenn die Thymidin-Vorbehandlung 6 Std vor der Endoxan-Injektion erfolgte. Verlängerung oder Verkürzung des Zeitintervalls verringerte die chemotherapeutische Wirksamkeit der Kombination. Der mögliche Wirkungsmechanismus wird diskutiert.

Synergistic effect of the combination of thymidine and cyclophosphamide on Ehrlich-Ascites-Tumor

Summary

Thymidine-pretreatment enhanced the chemotherapeutic action of cyclophosphamide on the Ehrlich-ascites-tumor when thymidine was injected 6 hours before the application of cyclophosphamide. Elongation or shortening of the time interval between thymidine and cyclophosphamide application diminished the chemotherapeutic efficacy of the combined compounds. The possible mechanism of action is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Apple, M. A., Greenberg, D. M.: Inhibition of cancer growth in mice by thymidine, methionine and pyruvic, glyceric and hydroxypyruvic aldehydes. Proc. Amer. Ass. Cancer Res. 9, 3 (1968).Google Scholar
  2. Barner, H. D., Cohen, S. S.: The introduction of thymine synthesis by T 2 infection of a thymine requiring mutant of Escherichia coli. J. Bact. 68, 80–88 (1954).Google Scholar
  3. Bootsma, D., Budke, L., Vos, O.: Studies on synchronous division of tissue culture cells initiated by excess thymidine. Exp. Cell Res. 33, 301–309 (1964).Google Scholar
  4. Cohen, S. S., Barner, H. G.: Studies on unbalanced growth in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 40, 885–893 (1954).Google Scholar
  5. Cohen, L. S., Studzinski, G. P.: Correlation between cell enlargement and nucleic acid and protein content of HeLa cells in unbalanced growth produced by inhibitors of DNA synthesis. J. cell. comp. Physiol. 69, 331–340 (1967).Google Scholar
  6. Djordjevic, B., Kim, J. H.: Modification of radiation response in synchronized HeLa cells by metabolic inhibitors: effects of DNA protein synthesis. Radiat. Res. 37, 435–450 (1969)Google Scholar
  7. Holoubek, V., Hnilica, L. S.: Changes in 3H-thymidine incorporation into the DNA by histones from normal and tumor tissues. J. nat. Cancer Inst. 39, 187–191 (1967).Google Scholar
  8. Kim, J. H., Eidinoff, M. L., Fox, J. J.: Action of 1-β-D-arabinofuranosyl-5-fluorocytosine on the nucleic acid metabolism and viability of HeLa cells. Cancer Res. 26, 1661–1664 (1966).Google Scholar
  9. Kim, J. H., Kim, S. H., Eidinoff, M. L.: Cell viability and nucleic acid metabolism after exposure of HeLa cells to excess thymidine and deoxyadenosine. Biochem. Pharmacol. 14, 1821–1829 (1965).Google Scholar
  10. Lambert, W. C., Studzinski, G. P.: Reversal of unbalanced growth induced in HeLa cells by excess thymidine. Fed. Proc. 26, 467 (1967a).Google Scholar
  11. ——: Recovery from prolonged unbalanced growth induced in HeLa cells by high concentrations of thymidine. Cancer Res. 27, 2364–2369 (1967b).Google Scholar
  12. Madoc, J. H., Bruce, W. R.: On the mechanism of the lethal action of 5-fluorouracil on mouse L cells. Cancer Res. 28, 1976–1981 (1968).Google Scholar
  13. Monis, N. R., Fischer, G. A.: Studies concerning the inhibition of cellular reproduction by deoxyribonucleosides. I. Inhibition of the synthesis of deoxycytidine by a phosphorylated derifative of thymidine. Biochim. biophys. Acta Amst. 68, 84–92 (1963).Google Scholar
  14. Morris, N. R., Reichard, P., Fischer, G. A.: Studies concerning the inhibition of cellular reproduction by deoxyribonucleosides. II. Inhibition of the synthesis of deoxycytidine by thymidine, deoxyadenosine and deoxyguanosine. Biochim. biophys. Acta (Amst.) 68, 93–99 (1963).Google Scholar
  15. Petersen, D. F., Anderson, E. C.: Quantity production of synchronized mammalian cells in suspension culture. Nature (Lond.) 203, 622–643 (1964).Google Scholar
  16. Puck, T. T.: Phasing, mitotic delay and chromosomal aberrations in mammalian cells. Science 144, 565–566 (1964).Google Scholar
  17. Reichard, P., Canellakis, Z. N., Canellakis, E. S.: Studies on a possible regulatory mechanism for the biosynthesis of a deoxyribonucleic acid. J. biol. Chem. 236, 2513–2519 (1961).Google Scholar
  18. Ruechert, R. R., Mueller, G. C.: Studies on unlalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res. 20, 1584–1591 (1960).Google Scholar
  19. Schachtschabel, D. O., Ferro, J. J.: The effect of 4-aminopyrazolo-(3,4)-pyrimidine and guanine on Ehrlich-ascites cells in culture. Exp. Cell Res. 48, 319–326 (1967).Google Scholar
  20. Sinclair, W. K.: Hydroxyurea: Effects on Chinese hamster cells grown in culture. Cancer Res. 27, 297–308 (1967).Google Scholar
  21. Stell, G. G.: Delayed uptake by tumours of tritium from thymidine. Nature (Lond.) 210, 806–808 (1966).Google Scholar
  22. Studzinsky, G. P., Cohen, L. S.: Mitomycin C induced insreases in the activities of the deoxyribonucleases of HeLa cells. Biochem. biophys. Res. Commun. 23, 506–512 (1966).Google Scholar
  23. ——, Roseman, J., Schweitzer, J. L.: Elevation of deoxyribonuclease activities in HeLa cells treated with selective inhibitors of DNA synthesis. Biochem. biophys Res. Commun. 25, 313–319 (1966).Google Scholar
  24. Xeros, N.: Deoxyriboside control and synchronization of mitosis. Nature (Lond.) 194, 682–683 (1962).Google Scholar
  25. Yang, S. J., Hahn, G. M., Bagshaw, M. A.: Chromosome aberrations induced by thymidine. Exp. Cell Res. 42, 130–135 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • H. Osswald
    • 1
  1. 1.Institut für experimentelle Toxikologie und Chemotherapie am Deutschen Krebsforschungszentrum HeidelbergHeidelbergDeutschland

Personalised recommendations