Theoretica chimica acta

, Volume 20, Issue 1, pp 57–64 | Cite as

Calculation of two-center zero-field splitting integrals

  • G. de Jager
  • J. de Jong
  • C. MacLean
  • P. Ros


Two-center zero-field splitting (ZFS) integrals have been calculated by numerical integration of Coulomb repulsion integrals which are evaluated over basic charge distributions as defined by Roothaan in terms of Slater atomic orbitals. The method is applied to the calculation of the ZFS integrals for π-π, σ-π and σ-σ electron interactions on C, N and N+ centers. Numerical results are given.


Physical Chemistry Inorganic Chemistry Organic Chemistry Charge Distribution Electron Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Zweizentren ZFS-Integrale sind mittels numerischer Integration von Coulombintegralen berechnet worden, und zwar die π-π, σ-π- und σ-σ-Integrale an C-, N- und N+-Zentren. Die numerischen Resultate werden mitgeteilt.


Les intégrales bi-centriques de séparation à champ nul (ZFS) ont été calculées par intégration numérique des intégrales de répulsion coulombiennes évaluées pour les distributions de charge fondamentales définies par Roothan en termes d'orbitales atomiques de Slater. La méthode est appliquée au calcul des intégrales ZFS pour les interactions π-π, σ-π et σ -σ sur les centres C, N et N+. Résultats numériques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Waals, J. H., de Groot, M. S.: Molecular Physics 2, 333 (1959); 3, 190 (1960).Google Scholar
  2. 1a.
    Gouterman, M., Moffitt, W.: J. chem. Physics 30, 1107 (1959).Google Scholar
  3. 2.
    Pitzer, R. M., Hameka, H. F.: J. chem. Physics 37, 2725 (1962).Google Scholar
  4. 2a.
    Pitzer, R. M., Kern, C. W., Lipscomb, A. N.: J. chem. Physics 37, 267 (1962).Google Scholar
  5. 3.
    Boorstein, S. A., Gouterman, M.: J. chem. Physics 39, 2443 (1963); 41, 2776 (1964); 42, 3070 (1965).Google Scholar
  6. 4.
    Prosser, F. P., Blanchard, C. H.: J. chem. Physics 36, 1112 (1962).Google Scholar
  7. 5.
    Lounsbury, J. B.: J. chem. Physics 42, 1549 (1965); 46, 2193 (1967).Google Scholar
  8. 6.
    Geller, M.: J. chem. Physics 39, 84, 853 (1963); 40, 2309 (1964).Google Scholar
  9. 7.
    Roothaan, C. C. J.: J. chem. Physics 19, 1445 (1951).Google Scholar
  10. 8.
    Capello, D., Pullman, A.: Theoret. chim. Acta (Berl.) 8, 383 (1967).Google Scholar
  11. 9.
    Schrader, D. M.: J. chem. Physics 41, 3266 (1964).Google Scholar
  12. 10.
    van der Waals, J. H., ter Maten, G.: Molecular Physics 8, 301 (1964).Google Scholar
  13. 11.
    Godfrey, M., Kern, C. W., Karplus, M.: J. chem. Physics 44, 4459 (1966).Google Scholar
  14. 12.
    Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions, pg. 887ff. New York: Dover Publications Inc. 1965.Google Scholar
  15. 13.
    Mulliken, R. S., Rieke, C. A., Orloff, D., Orloff, H.: J. chem. Physics 17, 1248 (1949).Google Scholar
  16. 14.
    van der Waals, J. H.: Private communication.Google Scholar
  17. 15.
    Beens, H., de Jong, J., Weller, A.: Coll. Amp. 15, 289 (1969); (editor P. Averbuch, North Holland Publishing Company).Google Scholar
  18. 16.
    de Jong, J., MacLean, C.: To be published. ProfessorGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • G. de Jager
    • 1
  • J. de Jong
    • 1
  • C. MacLean
    • 1
  • P. Ros
    • 1
  1. 1.Chemical LaboratoryVrije UniversiteitAmsterdam

Personalised recommendations