Advertisement

Theoretica chimica acta

, Volume 75, Issue 3, pp 173–194 | Cite as

Energy-adjusted pseudopotentials for the rare earth elements

  • M. Dolg
  • H. Stoll
  • A. Savin
  • H. Preuss
Article

Abstract

Nonrelativistic and quasirelativistic energy-adjusted pseudopotentials and optimized (7s6p5d)/[5s4p3d]-GTO valence basis sets for use in molecular calculations for fixed f-subconfigurations of the rare earth elements, La through Lu, have been generated. Atomic excitation and ionization energies from numerical HF, as well as SCF pseudopotential calculations using the derived basis sets, differ by less than 0.1 eV from numerical HF all-electron results. Corresponding values obtained from CI(SD), CEPA-1, as well as density functional calculations using the quasirelativistic pseudopotentials, are in reasonable agreement with experimental data.

Key words

Pseudopotentials Rare earth elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weeks JD, Hazi A, Rice SA (1969) Adv Chem Phys 16:283Google Scholar
  2. 2.
    Bardsley JN (1974) Case Stud At Phys 4:299Google Scholar
  3. 3.
    Dixon RN, Robertson IL (1978) In: Specialist report on theoretical chemistry, vol. 3, p. 100. The Chemical Society, LondonGoogle Scholar
  4. 4.
    Krauss M, Stevens WJ (1984) Ann Rev Phys Chem 35:357Google Scholar
  5. 5.
    Wedig U, Dolg M, Stoll H, Preuss H (1986) In: Veillard A (ed) Quantum chemistry: the challenge of transition metals and coordination chemistry, vol. 176. NATO ASI Series, Series C, Reidel, DordrechtGoogle Scholar
  6. 6.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:2123Google Scholar
  7. 7.
    Christiansen PA, Ermler WC, Pitzer KS (1985) Ann Rev Phys Chem 36:407Google Scholar
  8. 8.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270, 299Google Scholar
  9. 9.
    Hurley MM, Pacios LF, Christiansen PA, Ross RB, Ermler WC (1986) J Chem Phys 84:6840Google Scholar
  10. 10.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866Google Scholar
  11. 11.
    Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comp Chem 8:226, 256Google Scholar
  12. 12.
    Bauschlicher CW, Walch SP, Langhoff SR (1986) In: Veillard A (ed), Quantum chemistry: the challenge of transition metals and coordination chemistry, vol. 176. NATO ASI Series, Series C, Reidel, DordrechtGoogle Scholar
  13. 13.
    Field RW (1982) Ber Bunsenges Phys Chem 86:771Google Scholar
  14. 14.
    Froese Fischer C (1977) Program MCHF77, Pennsylvania State University, PennsylvaniaGoogle Scholar
  15. 15.
    Froese Fischer C (1976) The Hartree-Fock method for atoms — a numerical approach. Wiley, New YorkGoogle Scholar
  16. 16.
    Van Piggelen HU (1978) Thesis, Rijksuniversiteit te Groningen, NetherlandsGoogle Scholar
  17. 17.
    Li L, Ren J, Xu G, Wang X (1983) Int J Quant Chem 23:1305Google Scholar
  18. 18.
    Culberson JC, Knappe P, Rösch N, Zerner MC (1987) Theor Chim Acta 71:21Google Scholar
  19. 19.
    Weber J, Berthou H, Jorgensen CK (1977) Chem Phys 26:69Google Scholar
  20. 20.
    Ruscic B, Goodman GL, Berkowitz J (1983) J Chem Phys 78:5443Google Scholar
  21. 21.
    Myers CE, Norman LJ, Loew LM (1978) Inorg Chem 17:1581Google Scholar
  22. 22.
    Martin WC, Zalubas R, Hagan L (1978) Atomic energy levels — the rare earth elements. NSRDS-NBS-60, National Bureau of Standards, US Dept. of CommerceGoogle Scholar
  23. 23.
    Schwerdtfeger P (1978) Program JUSTPOT Universität Stuttgart, West GermanyGoogle Scholar
  24. 24.
    Dolg M (1987) Modified version of the program MCHF77 [14]Google Scholar
  25. 25.
    Wood JH, Boring AM (1978) Phys Rev B18:2701Google Scholar
  26. 26.
    Slater JC (1951) Phys Rev 81:385, see also Slater JC (1960) Quantum theory of atomic structure. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Perdew JP, Zunger A (1981) Phys Rev B23:5048Google Scholar
  28. 28.
    Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010Google Scholar
  29. 29.
    Martin RL, Hay PJ (1981) J Chem Phys 75:4539Google Scholar
  30. 30.
    Karwowski J, Kobus J (1985) Int J Quant Chem 27:741Google Scholar
  31. 31.
    Barthelat FC, Durand P (1981) Program PSATOM, Universite Paul Sabatier, Toulouse, France, modified version of the program ATOM-SCF written by Roos B, Salez C, Veillard A, Clementi E (1968) Technical Report RJ 518, IBM ResearchGoogle Scholar
  32. 32.
    McMurchie L, Elbert S, Langhoff S, Davidson ER (1982) Program MELD, University of Washington, Seattle, Washington, and Van Lenthe JH, Saunders VR (1985) program ATMOL, Science and Engineering Research Council, Daresbury Laboratory, Warrington, Great BritainGoogle Scholar
  33. 33.
    Langhoff SR, Davidson ER (1974) Int J Quant Chem 8:61Google Scholar
  34. 34.
    Stoll H, Pavlidou CME, Preuss H (1978) Theor Chim Acta 49:143Google Scholar
  35. 35.
    Perdew JP (1986) Phys Rev B33:8822Google Scholar
  36. 36.
    Hu CD, Langreth DC (1985) Phys Scripta 32:391Google Scholar
  37. 37.
    Stoll H, Savin A (1985) In: Dreizler RM, Providencia J (eds) Density functional methods in physics, vol. 123. NATO ASI Series, Series B, Plenum Press, New YorkGoogle Scholar
  38. 38.
    Savin A, Stoll H, Preuss H (1986) Theor Chim Acta 70:407Google Scholar
  39. 39.
    Meyer W (1973) J Chem Phys 58:1017; (1976) 64:2901Google Scholar
  40. 40.
    Werner HJ, Universität Frankfurt, West Germany, Meyer W, Universität Kaiserslautern, West Germany (1987) Program MOLPRO, Cray versionGoogle Scholar
  41. 41.
    Grant IP, McKenzie BJ, Norrington PH, Mayers DF, Oxford University, Great Britain, Pyper NC, Cambridge University, Great Britain (1980) program MCDFGoogle Scholar
  42. 42.
    Van Montfort JT, Van Piggelen HU, Aissing G, Nieuwpoort WC (1983) Program LSTERMS, Rijksuniversiteit te Groningen, NetherlandsGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Dolg
    • 1
  • H. Stoll
    • 1
  • A. Savin
    • 1
  • H. Preuss
    • 1
  1. 1.Institut für Theoretische ChemieUniversität StuttgartStuttgart 80Germany

Personalised recommendations