Theoretica chimica acta

, Volume 75, Issue 2, pp 81–98 | Cite as

Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization

  • Timothy J. Lee
  • Julia E. Rice
  • Gustavo E. Scuseria
  • Henry F. SchaeferIII


The deficiencies of common ab initio methods for the reliable prediction of the equilibrium structures of compounds composed of only the fluorine, oxygen and nitrogen atoms are investigated. Specifically, the importance of using large one-particle basis sets with multiple sets of polarization functions has been studied. Additionally, the need for a set of f basis functions was investigated. Several different single reference electron correlation methods have been tested in order to determine whether it is possible for a single reference based method to be routinely used on such chemical systems. These electron correlation methods include second order Møller-Plesset perturbation theory (MP2), singles and doubles configuration interaction (CISD), the coupled pair functional (CPF) approach and singles and doubles coupled cluster (CCSD) theory. The molecular systems studied include difluoroperoxide (FOOF), the cis form of the NO dimer, cis and trans difluorodiazene (FNNF) and the transition state to interconversion of the cis and trans isomers of FNNF. To the best of our knowledge, this is the first time that the cis-trans isomerization transition state has been reported. At the highest level of theory employed, the equilibrium structures of cis and trans FNNF agree very well with the experimental structures. However, the barrier to interconversion is predicted to be 65 kcal/mole, which is substantially higher than the experimental activation energy of 32 kcal/mole. Potential sources of error are discussed. A new diagnostic method for determining a priori the reliability of single reference based electron correlation methods is suggested and discussed.

Key words

Ab initio-methods Equilibrium structure Cis-trans isomerization Difluoroperoxide NO dimer Difluorodiazene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reisenauer HP, Maier G, Riemann A, Hoffmann RW (1984) Angew Chem Int Ed Eng 23:641Google Scholar
  2. 2.
    Lee TJ, Bunge A, Schaefer HF (1985) J Am Chem Soc 107:137Google Scholar
  3. 3.
    Kawaguchi K, Hirota E (1987) J Chem Phys 87:6838Google Scholar
  4. 4.
    Janssen CL, Allen WD, Schaefer HF, Bowman JM (1986) Chem Phys Lett 131:352Google Scholar
  5. 5.
    Yamashita K, Morokuma K, quoted in [3]Google Scholar
  6. 6.
    Botschwina P, quoted in [3]Google Scholar
  7. 7.
    Newton MD, Latham WA, Hehre WJ, Pople JA (1970) J. Chem Phys 52:4064Google Scholar
  8. 8.
    Kuczkowski R, Wilson EB (1963) J Chem Phys 39:1030Google Scholar
  9. 9.
    Jackson RH (1962) J Chem Soc 4585Google Scholar
  10. 10.
    Radom L, Latham WA, Hehre WJ, Pople JA (1971) J Am Chem Soc 93:5339Google Scholar
  11. 11.
    Lucchese RR, Schaefer HF, Rodwell WD, Radom LR (1978) J Chem Phys 68:2507Google Scholar
  12. 12.
    Ahlrichs R, Taylor PR (1982) Chem Phys 72:287Google Scholar
  13. 13.
    Clabo DA, Schaefer HF (1987) Int J Quantum Chem 31:429Google Scholar
  14. 14.
    Rohlfing CM, Hay PJ (1987) 86:4518Google Scholar
  15. 15.
    Mack HG, Oberhammer H (1988) Chem Phys Lett 145:121Google Scholar
  16. 16.
    Møller C, Plesset MS (1934) Phys Rev 46:618Google Scholar
  17. 17.
    Ahlrichs R (1979) Phys Commun 17:31Google Scholar
  18. 18.
    Guillory WA, Hunter CE (1969) J Chem Phys 50:3516Google Scholar
  19. 19.
    Lipscomb WN, Wang FE, May WR, Lippert EL (1961) Acta Crystallogr 14:1100Google Scholar
  20. 20.
    Dinerman CE, Ewing GE (1970 J Chem Phys 53:626Google Scholar
  21. 21.
    Weston CM, Langridge-Smith PRR, Howard BJ, Novik SE (1981) Mol Phys 44:145Google Scholar
  22. 22.
    Skaagrup S, Skancke PN, Boggs JE (1976) J Am Chem Soc 98:6106Google Scholar
  23. 23.
    Benzel MA, Dykstra CE, Vincent MA (1981) Chem Phys Lett 78:139Google Scholar
  24. 24.
    Craig NC, Piper LG, Wheller VL (1971) J Phys Chem 75:1453Google Scholar
  25. 25.
    Bonn RK, Bauer SH (1967) Inorg Chem 6:309Google Scholar
  26. 26.
    Straume K, Skancke A (1980) Chem Phys Lett 73:378Google Scholar
  27. 27.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  28. 28.
    Jankowski K, Becherer R, Scharf P, Schiffer H, Ahrlichs R (1985) J Chem Phys 82:1413Google Scholar
  29. 29.
    Dunning TH (1970) J Chem Phys 53:2823Google Scholar
  30. 30.
    Huzinaga S (1965) J Chem Phys 42:1293Google Scholar
  31. 31.
    Dunning TH (1971) J Chem Phys 55:716Google Scholar
  32. 32.
    van Duijneveldt FB (1971) IBM Research Report RJ945Google Scholar
  33. 33.
    Lee TJ, Schaefer HF (1985) J Chem Phys 83:1784Google Scholar
  34. 34.
    Weast RC, Astle MJ, Beyer WH (1987–1988) CRC handbook of chemistry and physics, 68th edn. CRC Press Boca Raton, Florida pp F159-F179Google Scholar
  35. 35.
    Karplus M, Porter RN (1970) Atoms and molecules. WA BenjaminGoogle Scholar
  36. 36.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265Google Scholar
  37. 37.
    Okumura M, Yeh LI, Normand D, van den Biesen JJH, Bustamente SW, Lee YT, Lee TJ, Handy NC, Schaefer HF (1987) J Chem Phys 86:3807Google Scholar
  38. 38.
    Ahlrichs R, Scharf P, Erhardt C (1985) J Chem Phys 82:890Google Scholar
  39. 39.
    Amos RD, Rice JE (1987) CADPAC: Cambridge Analytic Derivatives Package, Issue 4, CambridgeGoogle Scholar
  40. 40.
    Saxe P, Fox DJ, Schaefer HF, Handy NC (1982) J Chem Phys 77:5584Google Scholar
  41. 41.
    Rice JE, Amos RD, Handy NC, Lee TJ, Schaefer HF (1986) J Chem Phys 85:963Google Scholar
  42. 42.
    Scuseria GE, Scheiner AC, Lee TJ, Rice JE, Schaefer HF (1987) J Chem Phys 86:2881Google Scholar
  43. 43.
    Scheiner AC, Scuseria GE, Rice JE, Lee TJ, Schaefer HF (1987) J Chem Phys 87:5361Google Scholar
  44. 44.
    Lee TJ, Rice JE (in press) Chem Phys LettGoogle Scholar
  45. 45.
    Rice JE, Lee TJ, Handy NC (1988) J Chem Phys 88:7011Google Scholar
  46. 46.
    Scuseria GE, Schaefer HF (1987) Chem Phys Lett 142:354Google Scholar
  47. 47.
    Binenboym J, Burcat A, Lifshitz A, Shamir J (1966) J Am Chem Soc 88:5039Google Scholar
  48. 48.
    Simandiras ED, Handy NC, Amos RD (1987) Chem Phys Lett 133:324Google Scholar
  49. 49.
    Simandiras ED, Rice JE, Lee TJ, Amos RD, Handy NC (1988) J Chem Phys 88:3187Google Scholar
  50. 50.
    Handy NC, Gaw JF, Simandiras ED (1987) J Chem Soc Faraday Trans 2 83:1577Google Scholar
  51. 51.
    Laidig WD, Purvis GD, Bartlett RJ (1982) J Quantum Chem Symp 16:561Google Scholar
  52. 52.
    Laidig WD, Purvis GD, Bartlett RJ (1983) Chem Phys Lett 97209Google Scholar
  53. 53.
    Almløf J, Taylor PR (1987) J Chem Phys 86:4070Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Timothy J. Lee
    • 1
  • Julia E. Rice
    • 1
    • 3
  • Gustavo E. Scuseria
    • 2
  • Henry F. SchaeferIII
    • 2
  1. 1.University Chemical LaboratoryCambridgeUK
  2. 2.Center for Computational Quantum Chemistry, School of Chemical SciencesUniversity of GeorgiaAthensUSA
  3. 3.Newnham CollegeCambridge

Personalised recommendations