Theoretica chimica acta

, Volume 74, Issue 3, pp 167–184 | Cite as

Model studies of the chemisorption of hydrogen and oxygen on nickel surfaces

II. Atomic chemisorption on Ni(100)
  • Itai Panas
  • Per Siegbahn
  • Ulf Wahlgren


Atomic chemisorption of hydrogen and oxygen on the Ni(100) surface has been studied using an Effective Core Potential (ECP) approach described in a previous paper. Clusters of up to 50 nickel atoms have been used to model the surface. The computed chemisorption energies are 62 kcal/mol (exp. 63 kcal/mol) for hydrogen and 106 kcal/mol (exp. 115–130 kcal/mol) for oxygen. Correlating the adsorbate and the cluster-adsorbate bonds is extremely important for obtaining accceptable results, particularly for oxygen. Reasonable convergence of chemisorption energies is obtained with 40–50 cluster atoms for both hydrogen and oxygen. For hydrogen the addition of a third cluster layer stabilizes the results considerably. Both hydrogen and oxygen are adsorbed at (or close to) the four-fold hollow site. The calculated barriers for surface migration are also in good agreement with the experimental estimates. The calculated equilibrium heights above the surface are on the other hand too high compared with experiments. This disagreement is believed to be due to core-valence correlation effects, which are not incorporated in the present ECP. The cluster convergence for the height above the surface is much slower than for the chemisorption energy.

Key words

Effective core potential Chemisorption Adsorption Ni surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    See for example, Messmer RP (1979) In: Rhodin TN, Ertl G (eds) The nature of the surface chemical bond. North-Holland, Amsterdam, and Kasowski RV, Rhodin T, Tsai M-H (1986) Appl Phys A41:61 and references thereinGoogle Scholar
  2. 2.
    Panas I, Siegbahn P, Wahlgren U (1987) Chem Phys 112:325Google Scholar
  3. 3.
    Melius CF, Upton TH, Goddard WA (1978) Solid State Comm 28:501Google Scholar
  4. 4.
    Upton TH, Goddard WA (1981) CRC Critical Reviews in Solid State and Materials SciencesGoogle Scholar
  5. 5.
    Bauschlicher CW, Walch SP, Bagus PS, Brundle CR (1983) Phys Rev Lett 50:864Google Scholar
  6. 6.
    Bauschlicher CW, Bagus PS (1984) Phys Rev Lett 52:200Google Scholar
  7. 7.
    See for example, Smalley RE (1985) In: Bartlett RJ (ed) Comparison of ab initio quantum chemistry with experiment for small molecules. Reidel, DordrechtGoogle Scholar
  8. 8.
    Pettersson L, Siegbahn P, Åkeby H, Wahlgren U: to be publishedGoogle Scholar
  9. 9.
    Walch SP, Goddard WA (1976) J Am Chem Soc 98:7908Google Scholar
  10. 10.
    Bauschlicher CW, Nelin CJ (1986) Chem Phys 108:275Google Scholar
  11. 11.
    Hermann K, Bagus, PS (1977) Phys Rev B16:4195; Bagus PS, Hermann K, Seel M (1981) J Vac Sci Technol 18:435; Muller W, Bagus PS (1985) J Vac Sci Technol A3:1623; Bagus PS, Muller W (1985) Chem Phys Lett 115:540Google Scholar
  12. 12.
    Madhavan PV, Whitten JL (1981) Surf Sci 112:38; ibid (1982) J Chem Phys 77:2673; Whitten JL, Pakkanen TA (1980) Phys Rev B21:4357Google Scholar
  13. 13.
    Flad J, Igel-Mann G, Dolg M, Preuss H, Stoll H (1985) Surf Sci 163:285Google Scholar
  14. 14.
    Mattsson A, Panas I, Siegbahn P, Wahlgran U, Åkeby H (1987) Phys Rev B36:7389Google Scholar
  15. 15.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157Google Scholar
  16. 16.
    Siegbahn PEM (1983) Int J Quantum Chem 23:1869.Google Scholar
  17. 17.
    Davidson ER (1974) In: Doudel R, Pullman B (eds) The world of quantum chemistry. Reidel, DordrechtGoogle Scholar
  18. 18.
    Huzinaga S (1965) J Chem Phys 42:1293Google Scholar
  19. 19.
    Dunning TH (1970) J Chem Phys 53:2823Google Scholar
  20. 20.
    Siegbahn PEM, Blomberg MRA, Bauschlicher CW (1984) J Chem Phys 81:2103Google Scholar
  21. 21.
    Cox BN, Bauschlicher CW (1981) Surf Sci 108:483Google Scholar
  22. 22.
    Ertl G (1979) In: Rhodin TN, Ertl 6 (eds) The nature of the surface chemical bond, chap 5. North-Holland, AmsterdamGoogle Scholar
  23. 23.
    Stensgaard I, Jacobsen F (1985) Phys Rev Lett 54:711Google Scholar
  24. 24.
    Andersson S (1978) Chem Phys Lett 55:185Google Scholar
  25. 25.
    Umrigar C, Wilkins JW (1985) Phys Rev Lett 54:1551Google Scholar
  26. 26.
    Fantucci P, Bonacic-Koutecky V, Koutecky J (1986) Phys Rev B34:2777; Beckmann H-O, Koutecky J (1982) Surf Sci 120:127; Pacchioni G, Koutecky J, Beckmann H-O (1984) Surf Sci 144:602Google Scholar
  27. 27.
    Bagus PS, Schaefer HF, Bauschlicher CW (1983) J Chem Phys 78:1390Google Scholar
  28. 28.
    Muller W, Flesch J, Meyer W (1984) J Chem Phys 80:3297Google Scholar
  29. 29.
    Stoll, H, Fuentealba P, Dolg M, Flad J, Scentpaly Lv, Preuss H (1983) J Chem Phys 79:5532; Wedig U, Dolg M, Stoll H, Preuss H (1986) In: Veillard A (ed) Quantum chemistry: the challenge of transition metals and coordination chemistry. Reidel, DordrechtGoogle Scholar
  30. 30.
    Blomberg MRA, Siegbahn PEM, Roos BO (1982) Mol Phys 47:127Google Scholar
  31. 31.
    Hermann K, Bagus PS, Nelin CJ (1987) Phys Rev B35:9467Google Scholar
  32. 32.
    Bauschlicher CW (1986) Chem Phys Lett 586Google Scholar
  33. 33.
    Stöhr J, Jeager R, Kendelewicz T (1982) Phys Rev Lett 49:142Google Scholar
  34. 34.
    Andersson S (1979) Surf Sci 79:385; Andersson S, Karlsson P-A, Persson M (1983) Phys Rev Lett 51:2378Google Scholar
  35. 35.
    Demuth JE, DiNardo NJ, Cargill GS (1983) Phys Rev Lett 50:1373Google Scholar
  36. 36.
    Richter H, Gerhardt U (1983) Phys Rev Lett 51:1570Google Scholar
  37. 37.
    Brennan D, Hayward DO, Trapnel BMW (1960) Proc Roy Soc London A256:81Google Scholar
  38. 38.
    Conrad H, Ertl G, Kuppers J, Latta EE (1975) Surf Sci 50:296Google Scholar
  39. 39.
    Egelhoff WF (1984) Phys Rev B29:3681Google Scholar
  40. 40.
    Panas I, Schüle J, Brandemark U, Siegbahn P, Wahlgren U: J Phys Chem, in pressGoogle Scholar
  41. 41.
    Shustorovich E (1986) Surf Sci Reports 6:1Google Scholar
  42. 42.
    Rohlfing EA, Cox DM, Kaldor A,Johnson KH (1984) J Chem Phys 81:3846Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Itai Panas
    • 1
  • Per Siegbahn
    • 1
  • Ulf Wahlgren
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of StockholmStockholmSweden

Personalised recommendations