Advertisement

Theoretica chimica acta

, Volume 31, Issue 3, pp 205–214 | Cite as

SCF LCGO MO studies on the fluoronium ion FH 2 + and its hydrogen bonding interaction with hydrogen fluoride FH

  • G. H. F. Diercksen
  • W. von Niessen
  • W. P. Kraemer
Commentationes

Abstract

The stability and geometrical structure of the fluoronium ion is investigated using the onedeterminant SCF LCAO MO method. The equilibrium geometry is characterized by a bond length of d(FH)=0.95 Å and a bond angle of 114.75°. The proton binding energy is determined to be 120.1 kcal/mole. The molecules FH 3 2+ and FH3 are found to be unstable. A binding energy of 30.7 kcal/mole is obtained for the hydrogen bond formation between the systems FH 2 + and FH. In the minimum energy structure the central proton is situated midway between the two F atoms in a symmetrical single minimum potential. The general behavior of the potential curves of the di-solvated proton involving NH3, OH2, and FH as solvent molecules is discussed. In all these cases double minimum potentials are found, if the equilibrium separation between the heavy atoms is larger than approximately 2.4 Å, and single minimum potential for separations smaller than this value.

Key words

SCF LCGO MO calculation Proton solvation Hydrogen bonding FH2+ FH2+· FH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Couzi,M., Corunt,J.C., Huong,P.V.: J. Chem. Phys. 56, 426 (1972)Google Scholar
  2. 2.
    Haney,M.A, Franklin,J.L.: J. Chem. Phys. 50, 2028 (1969)Google Scholar
  3. 3.
    Chong,S.L., Myers,R.A., Franklin,J.L.: J. Chem. Phys. 56, 2427 (1972)Google Scholar
  4. 4.
    Frost,A.A.: J. Phys. Chem. 72, 1289 (1968)Google Scholar
  5. 5.
    Hopkinson,A.C., Holbrook,N.K., Yates,K., Csizmadia,I.G.: J. Chem. Phys. 49, 3596 (1968)Google Scholar
  6. 6.
    Jakubètz,W., Lischka,H., Rosmus,P., Schuster,P.: Chem. Phys. Letters 11, 38 (1971)Google Scholar
  7. 7.
    Kuipers,G.A., Smith,D.F., Nielsen,A.H.: J. Chem. Phys. 25, 275 (1956)Google Scholar
  8. 8.
    Roothaan,C.C.J.: Rev. Mod. Phys. 23, 69 (1951)Google Scholar
  9. 9.
    Diercksen,G.H.F., Kraemer,W.P.: MUNICH, Molecular Program System, Reference Manual, Special Technical Report, Max-Planck-Institut für Physik und Astrophysik (to be published)Google Scholar
  10. 10.
    Moskowitz,J.W, Harrison,M.C.: J. Chem. Phys. 43, 3550 (1965).Google Scholar
  11. 11.
    Salez,C., Veillard,A.: Theoret, chim. Acta (Berl.) 11, 441 (1968)Google Scholar
  12. 12.
    Diercksen,G.H.F., Kraemer,W.P.: Chem. Phys. Letters 6, 419 (1970)Google Scholar
  13. 13.
    McLean,A.D., Yoshimine,M.: J. Chem. Phys. 47, 3256 (1967).Google Scholar
  14. 13.a
    Cade,P.E., Huo,W.M.: J. Chem. Phys. 47, 614 (1967)Google Scholar
  15. 14.
    Diercksen,G.H.F.: unpublished resultsGoogle Scholar
  16. 15.
    Kraemer,W.P., Diercksen,G.H.F.: Chem. Phys. Letters 5, 463 (1970), and unpublished resultsGoogle Scholar
  17. 16.
    Merlet,P., Peyerimhoff,S.D., Buenker,R.J: preprint 1972Google Scholar
  18. 17.
    DelpuechJ.J., Serratrice,G., Strich,A., Veillard,A.: Chem. Com. to be publishedGoogle Scholar
  19. 18.
    Kebarle,P., Searles,S.K., Zolla,A., Scanborough,J., Arshadi,M.: J. Am. Chem. Soc. 89, 6393 (1967)Google Scholar
  20. 19.
    See e.g.: Glasstone,S.: Textbook of physical chemistry, p. 384. London: McMillan, 1956Google Scholar
  21. 20.
    Kraemer,W.P., Diercksen,G.H.F.: Theoret. chim. Acta (Berl.) 23, 398 (1972)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • G. H. F. Diercksen
    • 1
  • W. von Niessen
    • 1
  • W. P. Kraemer
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchen 40Germany

Personalised recommendations