Vertical bundles of dendrites in the neocortex

  • Kurt Fleischhauer
  • Hellmuth Petsche
  • Werner Wittkowski


In frontal and tangential paraffin sections through the sensory-motor cortex of the rabbit, vertical bundles of dendrites have been found. Each bundle consists of several apical dendrites of layer V pyramids and extends through layer IV into layer III/II where the dendrites begin to ramify. Electron microscopy reveals that within the bundle some of the dendrites approach each other so closely as to be separated by the extracellular space only. A vertical bundling of dendrites has, also been found in various regions of the sensory-motor cortex of the cat. — The hypothesis is put forward that the vertical bundles of dendrites are the morphological substrate of the vertical functional units deduced from electrophysiological observations.

Key words

Neocortex Dendrites Columns Rabbit Cat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cammermeyer, J.: An evaluation of the significance of the “dark” neuron. Ergebn. Anat. Entwickl.-Gesch. 36, 1–61 (1962).Google Scholar
  2. Elul, R.: Randomness and synchrony in the generation of the electroencephalogram. In: Synchronisation of EEG-activity in epilepsies, ed. by H. Petsche and M. A. B. Brazier. Wien-New York: Springer 1972.Google Scholar
  3. Fleischhauer, K.: Fluorescenzmikroskopische Untersuchungen an der Faserglia. Z. Zellforsch. 51, 467–469 (1960).Google Scholar
  4. Hubel, D. H., Wiesel, T. N.: Shape and arrangement of columns in cat's striate cortex. J. Physiol. (Lond.) 165, 559–568 (1963).Google Scholar
  5. Hubel, D. H., Wiesel, T. N.: Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).Google Scholar
  6. Kaes, Th.: Die Großhirnrinde des Menschen in ihren Maßen und in ihrem Fasergehalt. Ein gehirnanatomischer Atlas, 2 Bde. Jena: Gustav Fischer 1907.Google Scholar
  7. Klüver, H., Barrera, E.: A method for the combined staining of cells and fibres in the nervous system. J. Neuropath. exp. Neurol. 12, 400–403 (1953).Google Scholar
  8. Li, C. L., Cullen, C., Jasper, H. H.: Laminar microelectrode analysis of cortical unspecific responses and spontaneous rhythms. J. Neurophysiol. 19, 131–134 (1956).Google Scholar
  9. Luna, L. G.: Further studies of Bodian's technique. Amer. J. med. Technol. 30, 355–362 (1964).Google Scholar
  10. Marsh, R. C., Matlovsky, L., Stromberg, M.: Dendritic bundles exist. Brain Res. 33, 273–277 (1971).Google Scholar
  11. Mountcastle, V. B.: Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).Google Scholar
  12. Petsche, H., Rappelsberger, P., Frey, Zs.: Intrakortikale Mechanismen bei der Entstehung der Penicillinspitzen. EEG-EMG 2, 176–180 (1971).Google Scholar
  13. Petsche, H., Rappelsberger, P., Frey, Zs.: Intracortical aspects of the synchronisation of self-sustained bioelectrical activities. In: Synchronisation of EEG-activity in epilepsies, ed. by H. Petsche and M. A. B. Brazier. Wien-New York: Springer 1972.Google Scholar
  14. Petsche, H., Rappelsberger, P., Trappl, R.: Properties of cortical seizure potential fields. Electroenceph. clin. Neurophysiol. 29, 567–578 (1970).Google Scholar
  15. Powell, T. P. S., Mountcastle, V. B.: Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture Bull. Johns Hopk. Hosp. 105, 133–162 (1959).Google Scholar
  16. Prince, D. A., Wilder, B. J. F.: Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Arch. Neurol. (Chic.) 16, 194–202 (1967).Google Scholar
  17. Raabe, W., Lux, D.: Studies on extracellular potentials generated by synaptic activity on single cat motor cortex neurons. In: Synchronisation of EEG-activity in epilepsies, ed. by H. Petsche and M. A. B. Brazier. Wien-New York: Springer 1972.Google Scholar
  18. Richardson, K. C., Jarett, L., Finke, E. H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960).Google Scholar
  19. Romeis, B.: Mikroskopische Technik. München-Wien: R. Oldenbourg 1968.Google Scholar
  20. Rose, M.: Cytoarchitektonischer Atlas der Großirnrinde des Kaninchens. J. Psychol. Neurol. (Lpz.) 43, 353–440 (1931).Google Scholar
  21. Scheibel, M. E., Scheibel, A. B.: Organization of spinal motoneuron dendrites in bundles. Exp. Neurol. 28, 106–112 (1970).Google Scholar
  22. Tharp, B. R.: The penicillin focus: a study of field characteristics using cross-correlation analysis. Electroenceph. clin. Neurophysiol. 31, 45–55 (1971).Google Scholar
  23. Welt, C., Aschoff, J. C., Kameda K., Brooks, V. B.: Intracortical organization of cat's motorsensory neurons. In: Neurophysiological bases of normal and abnormal motor activities, ed. by M. D. Yahr and D. P. Purpura, p. 255–294. Hewlett, New York: Racen 1967.Google Scholar
  24. Woolsey, T. A., Loos, H. van der: The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex. Brain Res. 17, 205–242 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Kurt Fleischhauer
    • 1
    • 2
  • Hellmuth Petsche
    • 1
    • 2
  • Werner Wittkowski
    • 1
    • 2
  1. 1.Anatomisches Institut der Universität BonnDeutschland
  2. 2.Hirnforschungsinstitut der Oesterreichischen Akademie der Wissenschaften WienWienÖsterreich

Personalised recommendations