Bioprocess Engineering

, Volume 11, Issue 4, pp 129–134 | Cite as

Microbial production of xylitol from D-xylose using Candida tropicalis

  • S. S. da Silva
  • A. S. Afschar


Candida tropicalis DSM 7524 was used to produce xylitol from d-xylose. The fermentation conditions were optimized during continuous cultivation. The strain employed showed no great dependence upon temperature in a range between 30° C and 37° C. It achieved its best yield of xylitol from d-xylose at a pH value of 2.5. Such low pH values allow non sterile cultivation, which is a major economic factor. With an oxygen uptake rate of 0.8–1 ml oxygen per litre culture medium, the C. tropicalis produce xylitol at a yield of between 77% and 80% of the theoretical value. Higher yeast extract concentrations prevent the conversion of d-xylose into xylitol. d-xylose acts as a growth inhibitor in higher concentrations. The maximum xylitol yield was reached at a d-xylose concentration of around 100 g/l. In a non sterile batch culture with substrate shift 220 g/l xylitol were produced from 300 g/l d-xylose at a xylitol productivity rate of 0.37 g/(lh). In order to increase the specific yield, C. tropicalis was immobilised on porous glass and cultivated in a fluidized bed reactor. In a continuous non sterile cultivation with immobilised cells 155 g/l d-xylose produced 90–95% g/l xylitol with a productivity of 1.35 g/(lh).


Xylitol Porous Glass Oxygen Uptake Rate Candida Tropicalis Xylitol Productivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hyvönen, L.; Koivistoinen, P.: Food technological evaluation of xylitol. Adv. Food Res. 28 (1983) 373–403Google Scholar
  2. 2.
    Slininger, P. J.; Bolen, P. L.; Kurtzman, C. P.: Pachysolen tannophilus: Properties and process considerations for ethanol production from d-xylose. Enzyme Microb. Technol. 9(1) (1987) 5Google Scholar
  3. 3.
    Burgi, R.: Este bagaço não é de jogar fora. A granja 44 (484) (1988) 16–26Google Scholar
  4. 4.
    Havenaar, R.; Huis In T.; Veld, J. H. J.; Stoppelaar, J. D.; Backer Dir Ks, O.: Anti-cariogenic and remineralizing properties of xylitol in combination with sucrose in rats inoculated with Streptococcus mutans. Caries Res. 18 (1984) 269–277Google Scholar
  5. 5.
    Wåler, S. M.; Assev, S.; Rölla, G.: Xylitol 5-P formation by dental plaque after 12 weeks' exposure to a xylitol/sorbitol containing chewing gum. Scand. J. Dent. Res. 100 (1992) 319–321Google Scholar
  6. 6.
    Van Eys, J.; Wang, Y. M.; Chan, S.; Tanphaichitr, V. S.; King, S. M.: Xylitol as a therapeutic agent on glucose-6-phosphate dehydrogenase deficiency in: H. L. Sipple; K. W. McNutt (Eds.) Sugars in nutrition, p. 613. New York: Academic Press 1974Google Scholar
  7. 7.
    Melaja, A.; Hämälainen, L.: 1977 Process for making xylitol. US patent 373–403Google Scholar
  8. 8.
    Dahiya, J. S.: Xylitol production by Petromyces albertensis grown on medium containing d-xylose. Can. J. Microbiol. 37 (1991) 14–18Google Scholar
  9. 9.
    Vongsuvanlert, V.; Tani, Y.: Xylitol production by a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. J. Ferment. Technol. 1 (1989) 35–39Google Scholar
  10. 10.
    Prior, B. A.; Kilian, S. G.; Du Preez, J. C.: Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis, prospects and prblems. Process Biochem. 2 (1989) 21–32Google Scholar
  11. 11.
    Barbosa, M. F. S.; De Medeiros, M. B.; De Mancilha, I. M.; Schneider, H.; Lee, H.: Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J. Indust. Microbiol. 3 (1988) 241–251Google Scholar
  12. 12.
    Furlan, S. A.; Dupuy, M. L.; Strehaiano, P.: Bioconversion of d-xylose: Aeration and Kinetics. International conference of biotechnology and food, February, 1989, 20–24, Stuttgart, GermanyGoogle Scholar
  13. 13.
    Rizzi, M.; Klein, C.; Schulze, C.; Bui-Thanh, N.-A.; Dellweg, H.: Xylose fermentation by yeasts 5. Use of ATP balances for modeling oxygenlimited growth and fermentation of yeast Pichia stiptis with xylose as carbon source. Biotech. Bioeng. 34 (1989) 509–514Google Scholar
  14. 14.
    Horitsu, H.; Yahashi, Y.; Takamizawa, K.; Kawai, K.; Suzuki, T.; Watanabe, N.: Production of xylitol from d-xylose by Candida tropicalis: optimization of production rate. Biotechnol. Bioeng. 40 (1992) 1085–1091Google Scholar
  15. 15.
    Pirt, J. S.: Principles of microbe and cell cultivation, p. 65. New York: Blackwell Scientific Publications 1975Google Scholar
  16. 16.
    Roseiro, J. C.; Peito, A.; Girio, F. M.; Amaral-Collaço, M. T.: The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch. Microbiol. 156 (1991) 484–490Google Scholar
  17. 17.
    Bruinenberg, P. M.; De Bot, P. H. M.; Van Dijken, J. P.; Scheffers, W. A.: NADH-linked aldose reductase: the key to anaerobic alcohol fermentation of xylose by yeast. Appl. Microbiol. Biotechnol. 19 (1984) 256–260Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. S. da Silva
    • 1
  • A. S. Afschar
    • 2
  1. 1.GBF-Gesellschaft für Biotechnologische Forschung mbHBraunschweigGermany
  2. 2.CEBIQ-Center for Biotechnology and Chemistry, Faculty, of Chemical Engineering of LorenaUniversity of Sao PauloLorena Sao PauloBrazil

Personalised recommendations