International Journal of Thermophysics

, Volume 10, Issue 4, pp 845–856 | Cite as

Density and viscosity of tetralin and trans-decalin

  • F. A. Gonçalves
  • K. Hamano
  • J. V. Sengers


New measurements are reported for the density and viscosity of tetralin and trans-decalin. The density was determined from room temperature to 60°C for tetralin and to 95°C for trans-decalin. The kinematic viscosity was measured up to temperatures slightly above 100°C. Our results improve upon the values recommended by the American Petroleum Institute for these liquids.

Key words

decalin density synfuels tetralin viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Weinstein, Fundamental Data Needs for Coal Conversion Technology, TID-28152 (Recon Systems, Princeton, N.J., 1977).Google Scholar
  2. 2.
    A. L. Conn et al., Refining Synthetic Liquids from Coal and Shale (National Academy Press, Washington, D.C., 1980).Google Scholar
  3. 3.
    C. T. Lin. M. R. Brulé, F. K. Young, L. L. Lee, K. E. Starling, and J. Chao, Hydrocarbon Process. 59:229 (1980).Google Scholar
  4. 4.
    J. Kestin et al., Thermophysical Properties for Synthetic Fuels, DOE/ER-0172 (Division of Engineering, Brown University, Providence, R.I., 1983).Google Scholar
  5. 5.
    C. Tsonopoulos, J. L. Heideman, and S. C. Hwang, Thermodynamic and Transport Properties of Coal Liquids (Wiley, New York, 1986).Google Scholar
  6. 6.
    D. S. Robinson, A. J. Kidnay, and V. F. Yesavage, J. Chem. Thermodyn. 17:855 (1985).Google Scholar
  7. 7.
    D. A. Flanigan and V. F. Yesavage, J. Chem. Thermodyn. 19:931 (1987).Google Scholar
  8. 8.
    V. F. Yesavage, R. M. Baldwin, and J. Sandarusi, Private communication.Google Scholar
  9. 9.
    N. Bauer and S. Z. Lewis, in Techniques of Organic Chemistry, Vol. 1, A. Weissberger, ed. (Interscience, New York, 1959), p. 131.Google Scholar
  10. 10.
    Melles Griot, Optics Guide 4 (Melles Griot, Rochester, N.Y., 1988), pp. 3–13.Google Scholar
  11. 11.
    L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).Google Scholar
  12. 12.
    J. Kestin, J. V. Sengers, B. Kangar-Parsi, and J. M. H. Levelt Sengers, J. Phys. Chem. Ref. Data 13:175 (1984).Google Scholar
  13. 13.
    J. Kestin and J. V. Sengers, J. Phys. Chem. Ref. Data 15:305 (1986).Google Scholar
  14. 14.
    L. Haar, Private communication.Google Scholar
  15. 15.
    L. H. Bird and E. F. Daly, Trans. Faraday Soc. 35:588 (1939).Google Scholar
  16. 16.
    W. F. Seyer and C. H. Davenport, J. Am. Chem. Soc. 63:2425 (1941).Google Scholar
  17. 17.
    D. L. Camin and F. D. Rossini, J. Phys. Chem. 59:1173 (1955).Google Scholar
  18. 18.
    J. D. Gómez-Ibáñez and T. C. Wang, J. Phys. Chem. 70:391 (1966).Google Scholar
  19. 19.
    G. Körösi and E. sz. Kováts, J. Chem. Eng. Data 26:323 (1981).Google Scholar
  20. 20.
    API, API Publication 706 (American Petroleum Institute, Washington, D.C., 1978).Google Scholar
  21. 21.
    F. A. Gonçalves, K. Hamano, J. V. Sengers, and J. Kestin, Int. J. Thermophys. 8:641 (1987).Google Scholar
  22. 22.
    J. F. Swindells, R. Ullman, and H. Mark, in Techniques of Organic Chemistry, Vol. 1, A. Weissberger, ed. (Interscience, New York, 1959), p. 689.Google Scholar
  23. 23.
    J. V. Sengers and J. T. R. Watson, J. Phys. Chem. Ref. Data 15:1291 (1986).Google Scholar
  24. 24.
    H. Vogel, Phys. Z. 22:645 (1921).Google Scholar
  25. 25.
    W. F. Seyer and J. D. Leslie, J. Am. Chem. Soc. 64:1912 (1942).Google Scholar
  26. 26.
    K. Chylinski and R. Stryjek, Pol. J. Chem. 54:1797 (1980).Google Scholar
  27. 27.
    M. Sakurai and T. Nakagawa, J. Chem. Thermodynam. 14:269 (1982).Google Scholar
  28. 28.
    F. W. G. Kohlrausch, Praktische Physik, Band 3 (B. G. Teubner, Stuttgart, 1968), p. 40.Google Scholar
  29. 29.
    E. W. Washburn, ed., International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1927 and 1928), Vol. II, p. 327, and Vol. III, p. 79.Google Scholar
  30. 30.
    G. Schroeter, Justus Liebig's Ann. Chem. 426:1 (1922).Google Scholar
  31. 31.
    W. Herz and P. Schuftan, Z. Phys. Chem. 101:269 (1922).Google Scholar
  32. 32.
    W. MacFarlane and R. Wright, J. Chem. Soc. (London) 114 (1933).Google Scholar
  33. 33.
    B. J. Mair and A. J. Streiff, J. Res. Natl. Bur. Stand. 27:343 (1941).Google Scholar
  34. 34.
    W. Karo, R. L. McLaughlin, and H. F. Hipsher, J. Am. Chem. Soc. 75:3233 (1953).Google Scholar
  35. 35.
    Y. Oshmyansky, H. J. M. Hanley, J. F. Ely, and A. J. Kidnay, Int. J. Thermophys. 7:599 (1986).Google Scholar
  36. 36.
    API, API Publication 705 (American Petroleum Institute, Washington, D.C., 1978).Google Scholar
  37. 37.
    S. Harada, Private communication.Google Scholar
  38. 38.
    C. H. Byers and D. F. Williams, J. Chem. Eng. Data 32:344 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • F. A. Gonçalves
    • 1
  • K. Hamano
    • 1
  • J. V. Sengers
    • 1
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations