Advertisement

Effects of peripheral and local administration of picrotoxin on the release of newly synthesized 3H-dopamine in the caudate nucleus of the cat

  • A. Cheramy
  • A. Nieoullon
  • J. Glowinski
Article

Summary

The release of 3H-DA was estimated in superfusates of a superfusion cannula introduced into the caudate of a superfusion cannula introduced into was continuously formed from l-3,5-3H-tyrosine introduced into the superfusion medium. Injected at the periphery, picrotoxin (2.5 mg/kg, i.p.) markedly enhanced the release of 3H-DA the effect being particularly pronounced 90 min after the drug injection. The effects of the local introduction of picrotoxin into the substantia nigra and into the caudate nucleus on 3H-DA release were also examined to ensure the specificity of the result. Picrotoxin (10−5 M) added into the superfusing medium of a second superfusion cannula introduced into the substantia nigra enhanced by 2 to 5 times the release of 3H-DA during the drug application. No effect could be seen when the tip of the superfusion cannula was not exactly localized into the substantia nigra. Although less pronounced, a stimulation of 3H-DA release was also seen when picrotoxin (10−6 M) was added directly into the superfusion medium of the cannula introduced into the caudate nucleus. These results suggest that some gabaergic neurons are involved in the control of DA release by acting on dopaminergic cell bodies or dendrites into the substantia nigra. Other gabaergic neurons may directly or indirectly act on dopaminergic terminals within the caudate nucleus.

Key words

3H-dopamine release Caudate nucleus Substantia nigra Picrotoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., Bunney, B. S.: Dopaminergic and non-dopaminergic neurons of the substantia nigra: differential responses to putative transmitters. In: Neuropsychopharmacology, Proceed. IX Congress Collegium International Neurossychopharmacologicum (J. R. Boissier, H. Hippius and D. Pichot, eds.), pp. 444–452. Amsterdam: Excerpta Medica, 1975Google Scholar
  2. Andén, N.-E., Stock, G.: Inhibitory effect of gammahydroxybutyric acid and gamma aminobutyric acid on the dopamine cells in the substantia nigra. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 89–92 (1973)Google Scholar
  3. Bak, I. J., Choi, W. B., Hassler, R., Usunoff, K. G., Wagner, A.: Fine structural synaptic organization of the corpus striatum and substantia nigra in rat and cat. Advances Neurol. vol. 9, (D. B. Calne, T. N. Chase and Barbeau, A., eds.), pp. 25–41. New York: Raven Press 1975Google Scholar
  4. Bartholini, G., Stadler, H.: Cholinergic and gaba-ergic influences on the dopamine release in extrapyramidal centers. In: Chemical tools in catecholamine research, Vol. II (O. Almgren, A. Carlsson and J. Engel, eds.), pp. 235–241. Amsterdam: North Holland Pub. Co. 1975Google Scholar
  5. Bernardi, G., Marciani, M. G., Morocutti, C., Giacomini, P.: The action of picrotoxin and bicuculline on rat caudate neurons inhibited by GABA. Brain Res. 102, 379–384 (1976)Google Scholar
  6. Besson, M. J., Cheramy, A., Feltz, P., Glowinski, J.: Dopamine: spontaneous and drug induced release from the caudate nucleus in the cat. Brain Res. 32, 407–424 (1971)Google Scholar
  7. Breuker, E., Johnston, G. A. R.: Inhibition of acetylcholinesterase by bicuculline and related alkaloids. J. Neurochem 25, 903–904 (1975)Google Scholar
  8. Chalmers, A., McGeer, E. G., Wickson, U., McGeer, P. L.: Distribution of glutamic acid decarboxylase in the brains of various mammalian species. J. Comp. gen. Pharmacol. 1, 385–390 (1970)Google Scholar
  9. Crossman, A. R., Walker, R. J., Woodruff, G. N.: Picrotoxin antagonism of γ-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra. Brit. J. Pharmacol. 49, 696–698 (1973)Google Scholar
  10. Dray, A., Oakley, N. R., Simmonds, M. A.: Rotational behaviour following inhibition of GABA metabolism unilateraly in the rat substantia nigra. J. Pharm. Pharmacol. 27, 627–629 (1975)Google Scholar
  11. Fahn, S., Coté, L. S.: Regional distribution of γ-aminobutyric acid (GABA) in brain of the rhesus monkey. J. Neurochem. 15, 209–213 (1968)Google Scholar
  12. Feltz, P.: γ-Aminobutyric acid and a caudate-nigral inhibition. Can. J. Physiol. Pharmacol. 49, 1113–1115 (1971)Google Scholar
  13. Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J., Walberg, F.: Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res 71, 77–92 (1974)Google Scholar
  14. Giorguieff, M. F., Le Floc'h, M. L., Westfall, T. C., Glowinski, J., Besson, M. J.: Nicotinic effect of acetylcholine on the release of newly synthetized (3H)dopamine in rat striatal slices and cat caudate nucleus. Brain Res. 106, 117–132 (1976)Google Scholar
  15. Giorguieff, M. F., Le Floc'h, M. L., Glowinski, J., Besson, M. J.: Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat. J. Pharmacol. exp. Ther. (in press, 1977)Google Scholar
  16. Godfraind, J. P., Krnjevic, K., Pumain, R.: Doubtful value of bicuculline as a specific antagonist of GABA. Nature (Lond.) 228, 657–676 (1970)Google Scholar
  17. Grofova, I., Rinvik, E.: An experimental electron-microscopic study of the striato-nigral projection in the cat. Exp. Brain Res. 11, 249–262 (1970)Google Scholar
  18. Hajdu, F., Hassler, R., Bak, I. J.: Electron microscopic study of the substantia nigra and the strio-nigral projection in the rat. Z. Zellforsch. 146, 207–221 (1973)Google Scholar
  19. Hassler, R., Bak, I. J., Usunoff, K. I., Choi, W. B.: Synaptic organization of the descending and ascending connections between the striatum and the substantia nigra in the cat. In: Neuropsychopharmacology, Proceeding IXe Cong. CINP, (J. R. Boissier, H. Hippius and D. Pichot, eds.), pp. 397–411. Amsterdam: Excerpta Medica 1975Google Scholar
  20. Hattori, T., Fibiger, H. C., McGeer, P. L.: Demonstration of a pallido-nigral projection innervating dopaminergic neurons. J. Comp. Neurol. 162, 487–504 (1975)Google Scholar
  21. Kataoka, K., Bak I. J., Hassler, R., Kim, J. S., Wagner, A.: l-glutamate decarboxylase and choline acetyltransferase activity in the substantia nigra and the striatum after surgical interruption of the strio-nigral fibres of the baboon. Exp. Brain Res. 19, 217–227 (1974)Google Scholar
  22. Keller, H. H., Bartholini, G., Pieri, L., Pletscher, A.: Effects of spreading depression on the turnover of cerebral dopamine. Europ. J. Pharmacol. 20, 287–290 (1972)Google Scholar
  23. Kim, J. S., Bak, I. J., Hassler, R., Okada, Y.: Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2: Some evidence of a type of GABA-rich strionigral neurons. Exp. Brain Res. 14, 95–104 (1971)Google Scholar
  24. Krnjevic, K.: Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54, 418–540 (1974)Google Scholar
  25. McGeer, P. L., McGeer, E. G.: Evidence for glutamic acid decarboxylase containing interneurons in the neostriatum. Brain Res. 91, 331–335 (1975)Google Scholar
  26. McGeer, P. L., Hattori, T., Fibiger, H. C.: Ascending and descending connections of nigral dopaminergic neurons by electron microscopic autoradiography. In: Neuropsychopharmacology, Proceeding IXe Congress CINP, (J. R. Boissier, H. Hippius and D. Pichot, eds.), pp. 412–424. Amsterdam: Excerpta Medica 1975Google Scholar
  27. Nieoullon, A., Chéramy, A., Glowinski, J.: An adaptation of the push-pull cannula method to study the in vivo release of 3H-dopamine synthetized from 3H-tyrosine in the cat caudate nucleus: effects of various physical and pharmacological treatments. J. Neurochem., (in press, 1977)Google Scholar
  28. Obata, K., Yoshida, M.: Caudate evoked inhibition and action of GABA and other substances on cat pallidal neurons. Brain Res. 64, 455–459 (1973)Google Scholar
  29. Olsen, R. W.: Approaches to study of GABA receptors. In: Gaba in nervous system function, (E. Roberts, T. N. Chase and D. Tower, eds.), pp. 287–304. New York: Raven Press 1976Google Scholar
  30. Olsen R. W., Ban, M., Miller, T., Johnston, G. A. R.: Chemical instability of the GABA antagonist bicuculline under physiological conditions. Brain Res. 98, 383–387 (1975)Google Scholar
  31. Olsen, R. W., Ban, M., Miller, T.: Studies in the neuropharmacological activity of bicuculline and related compounds. Brain Res. 102, 283–299 (1976)Google Scholar
  32. Precht, W., Yoshida, M.: Blocage of caudate evoked inhibition in the substantia nigra by picrotoxin. Brain Res. 32, 229–233 (1971)Google Scholar
  33. Snider, R. S., Niemer, W. T.: A stereotaxic atlas of the cat brain. Chicago: The University of Chicago Press 1961Google Scholar
  34. Svenneby, G., Roberts, E.: Bicuculline and N-methylbicuculline competitive inhibitors of brain acetylcholinesterase. J. Neurochem. 21, 1025–1026 (1973)Google Scholar
  35. Tarsy, D., Pycock, C., Meldrum, B., Marsden, S. D.: Rotational behaviour induced in rats by intranigral picrotoxin. Brain Res. 89, 160–165 (1975)Google Scholar
  36. Westfall, T. C., Besson, M. J., Giorguieff, M. F., Glowinski, J.: The role of presynaptic receptors in the release and synthesis of (3H)dopamine by slices of rat striatum. Naunyn-Schmiedeberg's Arch. Pharmacol. 292, 279–288 (1976)Google Scholar
  37. Yoshida, M., Precht, W.: Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res. 32, 225–228 (1971)Google Scholar
  38. Yoshida, M., Rabin, A., Anderson, M.: Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers. Exp. Brain Res. 15, 333–347 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Cheramy
    • 1
  • A. Nieoullon
    • 1
  • J. Glowinski
    • 1
  1. 1.Groupe NB, I.N.S.E.R.M.U.114Collège de FranceParis Cedex 5France

Personalised recommendations