Pharmacological properties of tetrahydronorharmane (Tryptoline)

  • H. Rommelspacher
  • H. Kauffmann
  • C. Heyck Cohnitz
  • H. Coper


Earlier in vitro experiments led to the hypothesis that tetrahydronorharmane (THN) modulates the effect of serotonin. This assumption has now been tested in vivo on rats. In addition dopaminergic mechanisms were investigated. Findings in favour of a serotonergic action of THN were:

  1. 1.

    The analgesic effect of THN which was antagonized by 9,10-dihydro, 10-(1-methyl-4-piperidyliden)-9-anthrol, a serotonin-receptor antagonist

  2. 2.

    the hypothermic effect of THN

  3. 3.

    the appetite-reducing effect of long-term treatment with THN.


An antidopaminergic effect of THN was suggested by:

  1. 1.

    The motility-reducing effect of THN

  2. 2.

    the antagonistic effect against apomorphine-induced licking movements of acute and chronic treatment with THN and the development of supersensitivity to apomorphine one week after withdrawal of THN.

  3. 3.

    the antagonistic effect of THN against the contralateral turning response to apomorphine in animals with unilateral medial forebrain bundle lesions.


The antidopaminergic effects were elicited by lower doses of THN than the stimulation of serotonergic mechanisms.

The observed prolongation of hexobarbital sleeping time might be an unspecific effect. A reduction of the elimination rate of the barbiturate was not detected.

Key words

Tetrahydronorharmane Tryptoline β-Carboline Serotonin Dopamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Functional role of the nigro-striatal dopamine neurons. Acta pharmacol. (Kbh.) 24, 263–274 (1966)Google Scholar
  2. Andén, N.-E., Fuxe, K., Hökfelt, T., Rubenson, A.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)Google Scholar
  3. Arbuthnott, G. W., Crow, T. J.: Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. Exp. Neurol. 30, 484–491 (1971)Google Scholar
  4. Barchas, J. D., Elliot, G. R., Doamaral, J., Erdelyi, E., O'Connor, S., Bowden, M., Brodie, H. K. H., Berger, P. A., Renson, J., Wyatt, R. J.: Tryptolines, formation from tryptamines and 5-MTHF by human platelets. Arch. gen. Pyschiat. 31, 862–867 (1974)Google Scholar
  5. Blundell, J. E., Lesham, M. B.: The effect of 5-hydroxytryptophan on food intake and on the anorexic action of amphetamine and fenfluramine. J. Pharm. Pharmacol. 27, 31–37 (1975)Google Scholar
  6. Brody, J. F.: Behavioral effects of serotonin depletion and of pchlorophenylalanine (a serotonine depletor) in rats. Psychopharmacologia (Berl.) 17, 14–33 (1970)Google Scholar
  7. Brodie, B. B., Burns, J. J., Mark, L. C., Lief, P. A., Bernstein, E., Papper, E. M.: Fate of pentobarbital in man, dog and a method for its estimation in biological material. J. Pharmacol. exp. Ther. 109, 26–34 (1953)Google Scholar
  8. Von Brücke, F. T., Hornykiewicz, O., Sigg, E. B.: The pharmacology of psychotherapeutic drugs. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  9. Buckholtz, N. S., Boggan, W. O.: Effects of terahydro-β-carbolines on monoamine oxidase and serotonin uptake in mouse brain. Biochem. Pharmacol. 25, 2319–2321 (1976)Google Scholar
  10. Cavalli-Sforza, L.: Biometrie, pp. 171–181. Stuttgart: G. Fischer 1969Google Scholar
  11. Coper, H., Deyhle, G., v. Herrath, D., Veit, J.: Zum Mechanismus der schlafverlängernden Wirkung verschiendener Pharmaka. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 366–378 (1968)Google Scholar
  12. Costall, B., Naylor, R. J., Olley, J. E.: Catalepsy and circling behavior after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus, and substantia nigra of rat brain. Neuropharmacology 11, 645–663 (1972)Google Scholar
  13. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  14. Ernst, A. M., Smelik, P. G.: Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats. Experientia (Basel) 22, 837–838 (1966)Google Scholar
  15. Feldberg, W., Lotti, V. J.: Temperature responses to monoamines and an inhibitor of MAO injected into the cerebral ventricles of rats. Brit. J. Pharmacol. 31, 152–161 (1967)Google Scholar
  16. Foldes, A., Costa, E.: Relationship of brain monoamine and locomotor activity in rats. Biochem. Pharmacol. 24, 1617–1621 (1975)Google Scholar
  17. Goudie, A. J., Thornton, E. W., Weeler, T. J.: Effects of Lilly 110140, a specific inhibitor of 5-hydroxytryptamine uptake, on food intake and on 5-hydroxytryptophan-induced anorexia. Evidence for serotonergic inhibition of feeding. J. Pharm. Pharmacol. 28, 318–320 (1976)Google Scholar
  18. Grahame-Smith, D. G.: Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J. Neurochem. 18, 1053–1066 (1971)Google Scholar
  19. Harvey, J. A., Lints, C. E.: Lesions in the medial forebrain bundle: Relationship between pain sensitivity and telencephalic content of serotonin. J. comp. physiol. Psychol. 74, 28–36 (1971)Google Scholar
  20. Harvey, J. A., Schlosberg, A. J., Yunger, L. M.: Effect of p-CP and brain lesions on pain sensitivity and morphine analgesia in the rat. in: Advances in Biochemical Psychopharmacology, (E. Costa, G. L. Gessa, and M. Sandler, eds.), pp. 233–241. New York: Raven Press 1974Google Scholar
  21. Hsu, L. L., Mandell, A. J.: Enzymatic formation of terahydro-β-carboline from tryptamine and 5-methyltetrahydrofolic acid in rat brain fractions: regional and subcellular distributions. J. Neurochem. 24, 631–636 (1975)Google Scholar
  22. Jacobs, B. L.: An animal behavior model for studying central serotonergic synapses. Life Sci. 19, 777–786 (1976)Google Scholar
  23. Janssen, P. A. J., Niemegeers, C. J. E., Jageneau, A. H. M.: Apomorphine-antagonism in rats. Arzneimittel-Forsch. 10, 1003–1005 (1960)Google Scholar
  24. Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data (Part IV). Arnzeimittel-Forsch. 17, 841–854 (1967)Google Scholar
  25. Jend, H. H., Coper, H.: On the mechanism of the synergistic effect of perazine and hexobarbital. Naunyn-Schmiedeberg's Arch. Pharmacol. 281, 219–232 (1974)Google Scholar
  26. König, J. F. R., Klippel, R. A.: The rat brain. Baltimore: The Williams and Wilkins Co., 1967Google Scholar
  27. Kostowski, W., Gialcone, E., Garattini, S., Valzelli, L.: Studies on behavioral and biochemical changes in rats after lesion of midbrain raphé. Europ. J. Pharmacol. 4, 371–377 (1968)Google Scholar
  28. Kruk, Z. L.: Dopamine and 5-hydroxytryptamine inhibit feeding in rats. Nature (Lond.) 246, 52–53 (1973)Google Scholar
  29. Lauwers, W., Leysen, J., Verhoeven, H., Laduron, P.: Identification of alkaloids: The condensation products of biogenic amines with formaldehyde, enzymatically formed from 5-methyltetrahydrofolic acid. Biomed. Mass. Spectrom. 2, 15–22 (1975)Google Scholar
  30. Leibowitz, S. F.: Adrenergic receptor mechanisms in eating and drinking. In: The neurosciences (F. O. Schmitt and F. G. Worden, eds.), pp. 713–719. Cambridge, U.S.A.: The MIT Press 1974Google Scholar
  31. Lints, C. E., Harvey, J. A.: Altered sensitivity to footshock and decreased brain content of serotonin following brain lesions in the rat. J. comp. physiol. Psychol. 67, 23–31 (1969)Google Scholar
  32. Magour, S., Coper, H., Fähndrich, C.: The effect of chronic self-administration of d-amphetamine on food intake, locomotor activity and 14C-leucine incorporation into cerebral cortex protein. Psychopharmacologia (Berl.) 45, 267–270 (1976)Google Scholar
  33. Mandel, L. R., Rosegay, A., Walker, R. W., Vandenheuvel, W. J. A., Rokach, J.: 5-Methyltetrahydrofolic acid as a mediator in the formation of pyridoindoles. Science 186, 741–743 (1974)Google Scholar
  34. Miliaressis, E., Jacobowitz, D.: Hyperthermia following self-stimulation of the median raphé in the rat. Pharmacol. Biochem. Behav. 4, 477–479 (1976)Google Scholar
  35. Nielsen, E. G., Lyon, M.: Drinking behaviour and brain dopamine: Antagonistic effect of two neuroleptic drugs (Pimozide and Spiramide) upon amphetamine — or apomorphine — induced hypodipsia. Psychopharmacologia (Berl.) 33, 299–308 (1973)Google Scholar
  36. Rating, D., Broermann, I., Honecker, H., Kluwe, S., Coper, H.: Effect of subchronic treatment with (−) delta-8-trans-tetrahydrocannabiol (delta-8-THC) on food intake, body temperature hexobarbital sleeping time and hexobarbital elimination in rats. Psychopharmacologia (Berl.) 27, 349–357 (1972)Google Scholar
  37. Remmer, H.: Der beschleunigte Abbau von Pharmaka in den Lebermikrosomen unter Einfluß von Luminal. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 235, 279–290 (1959)Google Scholar
  38. Rommelspacher, H., Kuhar, M. J.: Effects of dopaminergic drugs and acute medial forebrain bundle lesions on striatal acetylcholine levels. Life Sci. 16, 65–70 (1975)Google Scholar
  39. Rommelspacher, H., Coper, H., Strauss, S.: On the mode of formation of tetrahydro-β-carbolines. Life Sci. 18, 81–88 (1976a)Google Scholar
  40. Rommelspacher, H., Bade, P., Coper, H., Kossmehl, G.: Inhibition of the uptake of serotonin by tryptoline. Naunyn-Schmiedeberg's Arch. Pharmacol. 292, 93–95 (1976b)Google Scholar
  41. Sheard, M. H.: The effect of p-chlorophenylalanine on behavior in rats: Relation to brain serotonin and 5-hydroxyindoleacetic acid. Brain Res. 15, 524–528 (1969)Google Scholar
  42. Smith, R. C., Davis, J. M.: Behavioral evidence for supersensitivity after chronic administration of haloperidol, clozapine, and thioridazine. Life Sci. 19, 725–732 (1976)Google Scholar
  43. Tenen, S. S.: The effects of p-chlorophenylalanine, a serotonin depletor, on avoidance acquisition, pain sensitivity and related behavior in the rat. Psychopharmacologia (Berl.) 10, 204–219 (1967)Google Scholar
  44. Tuomisto, J.: Inhibition by tetrahydroharmane compounds of 5-hydroxytryptamine and histamine uptake in rabbit blood platelets. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 361–370 (1973)Google Scholar
  45. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta physiol. scand., Suppl. 367, 69–93 (1971a)Google Scholar
  46. Ungerstedt, U.: Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta physiol. scand., Suppl. 367, 95–122 (1971b)Google Scholar
  47. Vejdelek, Z. J., Trcka, V., Protiva, M.: Synthetic experiments in the group of hypertensive alkaloids. XXI. Chemistry of 1,2,2,4-tetrahydro-norharmane-1-carboxylic acid and derivatives. J. med. pharm. Chem. 3, 427–440 (1961)Google Scholar
  48. Walters, J., Roth, R. H., Aghajanian, G. R.: Dopaminergic neurons: Similar biochemical and histochemical effects of γ-hydroxybutyrate and acute lesions of the nigroneostriatal pathway. J. Pharmacol. exp. Ther. 186, 630–639 (1973)Google Scholar
  49. Wong, D. T., Horng, J. S., Bymaster, F. P., Hauser, K. L., Molloy, B. B.: A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci. 15, 471–479 (1974)Google Scholar
  50. Yunger, L. M., Harvey, J. A.: Effect of lesions in the medial forebrain bundle on three measures of pain sensivity and noise-elicited startle. J. comp. physiol. Psychol. 83, 173–183 (1973)Google Scholar
  51. Zetler, G., Singbartl, G., Schlosser, L.: Cerebral pharmacokinetics of tremor-producing harmala and iboga alkaloids. Pharmacology 7, 237–248 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. Rommelspacher
    • 1
  • H. Kauffmann
    • 1
  • C. Heyck Cohnitz
    • 1
  • H. Coper
    • 1
  1. 1.Institut für NeuropsychopharmakologieFreie Universität BerlinBerlin 19

Personalised recommendations