Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 294, Issue 3, pp 285–291 | Cite as

Relationship of antiarrhythmic to inotropic activity and antiarrhythmic qualities of the optical isomers of verapamil

  • M. Raschack


  1. 1.

    The relationship of antiarrhythmic to inotropic activity of the optical isomers of verapamil was studied by comparing their effects on functional refractory period and force of contraction in the isolated left atrium of the guinea pig and on maximum follow frequency and contractility in the dog heart. To evaluate the antiarrhythmic profile of the optical isomers of verapamil the relationship between threshold voltage and impulse duration in the left atrium of the guinea pig and the antagonistic action against ventricular arrhythmias in the rat were studied.

  2. 2.

    (-)Verapamil is nearly 10 times more effective than (+)verapamil in prolonging the functional refractory period in the isolated left atrium of the guinea pig.

  3. 3.

    In the dog heart (-)verapamil is about 8 times more active in reducing maximum follow frequency at atrial pacing, as well as spontaneous heart rate and in prolonging PQ-duration.

  4. 4.

    In the guinea pig atrium (+)verapamil shows less negative inotropic activity than its enantiomorph. With (+)verapamil the concentration producing a 25% decrease in contractility is 3.7 times higher than that causing a 25% increase in refractory period. With (-)verapamil these concentrations are identical.

  5. 5.

    In the dog i.v. infusion of the isomers, at a dosage inducing identical reduction of maximum follow frequency, is accompanied by a decrease in left ventricular dp/dtmax with (-)verapamil, whereas with the (+)isomer a significant increase of dp/dtmax is observed at a certain dose level.

  6. 6.

    Because of the higher antiarrhythmic activity of (-)verapamil, the antiarrhythmic profile and the inotropic pattern of the racemic compound are mainly due to this isomer.

  7. 7.

    (+)Verapamil shifts the voltage duration curve of the isolated left atrim of the guinea pig to the right and leads to a significant increase in the chronaxie value. (-)Verapamil has no comparable effects on the excitability of the atrial myocardium.

  8. 8.

    In the intact animal (+)verapamil shows additional antiarrhythmic qualities. Like procainamide, but with higher activity, it antagonizes ventricular arrhythmias (ectopic beats, automaticity and flutter or fibrillation) which can be provoked in the rat by i.v. infusion of aconitine. (-)Verapamil and the racemic compound are ineffective against these ventricular rhythm disorders.


Key word

Verapamil Optical isomers Inotropic activity Antiarrhythmic profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayer, R., Kalusche, D., Kaufmann, R., Mannhold, R.: Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium. III. Effects of the optical isomers on transmembrane action potentials. Naunyn-Schmiedeberg's Arch. Pharmacol. 290, 81–97 (1975b)Google Scholar
  2. Bayer, R., Kaufmann, R., Mannhold, R.: Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium. II. Pattern of inotropic effects of the optical isomers. Naunyn-Schmiedeberg's Arch. Pharmacol. 290, 69–80 (1975a)Google Scholar
  3. Bender, F.: Die Behandlung der tachykarden Arrhythmien und der arteriellen Hypertonie mit Verapamil. Arzneimittel-Forsch. 20, 1310–1316 (1970)Google Scholar
  4. Cranefield, P. F., Aronson, R. S., Wit, A. L.: Effect of verapamil on the normal action potential and on a calcium-dependent slow response of canine cardiac purkinje fibers. Circulat. Res. 34, 204–213 (1974)Google Scholar
  5. Dawes, G. S.: Synthetic substitutes for quinidine. Brit. J. Pharmacol. 1, 90–112 (1946)Google Scholar
  6. Fleckenstein, A.: In: Calcium and the heart (P. Harris, and L. Opie, eds.), pp. 135–188. London-New York: Academic Press 1971Google Scholar
  7. Fleckenstein, A., Kammermeier, H., Döring, H. J., Freund, H. J.: Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff-einsparenden Myokardeffekten, Prenylamine and Iproveratril. Z. Kreisl-Forsch. 56, 716–744, 839–858 (1967)Google Scholar
  8. Govier, W. C.: The mechanism of the atrial refractory period change produced by ouabain. J. Pharmacol. exp. Ther. 148, 100–105 (1965)Google Scholar
  9. Hanley, C., Lebowitz, W. B.: Iproveratril in angina pectoris. St Vinc. Hosp. med. Bull. 9, 1–5 (1967)Google Scholar
  10. Katzung, B.: Evaluation of antiarrhythmic drugs. In: Selected Pharmacological Testing Methods, Vol. 3 (A. Burger, ed.), pp. 218–234. New York: Marcel Dekker Inc. 1968Google Scholar
  11. Kaufmann, R., Bayer, R., Hennekes, R., Kalusche, D., Mannhold, R.: Anti-dysrhytmic and Ca-antagonistic actions of verapamil and D 600: Stereoselectivity of optical isomers? Naunyn-Schmiedeberg's Arch. Pharmacol. Suppl. 285, R39 (1974)Google Scholar
  12. Kaumann, A. J., Aramendia, P.: Prevention of ventricular fibrillation induced by coronary ligation. J. Pharmacol. exp. Ther. 164, 326–332 (1968)Google Scholar
  13. Kaumann, A. J., Serur, J. R.: Prevention of ventricular fibrillation by canine coronary artery ligation with optical isomers of verapamil. Abstr. 6th Int. Congr. Pharmacol., Helsinki, July 20–25, 374, 1975aGoogle Scholar
  14. Kaumann, A. J., Serur, J. R.: Optical isomers of verapamil on canine heart. Prevention of ventricular fibrillation induced by coronary artery occlusion, impaired atrioventricular conductance and negative inotropic and chronotropic effects. Naunyn-Schmiedeberg's Arch. Pharmacol. 291, 347–358 (1975b)Google Scholar
  15. Livesley, B., Catley, P. F., Campbell, R. C., Oram, S.: Doubleblind evaluation of verapamil, propranolol and isosorbide dinitrate against a placebo in the treatment of angina pectoris. Brit. med. J. 1973I, 375–378Google Scholar
  16. Neuss, H., Nowak, F. G., Schlepper, M., Wüsten, B.: The effects of anti-anginal drugs on AV-conduction in normal subjects. Arzneimittel-Forsch. 24, 213–216 (1974)Google Scholar
  17. Neuss, H., Schlepper, M.: Der Einfluß von Verapamil auf die atrio-ventrikuläre Überleitung. Lokalisation des Wirkungsortes mit His-Bündel-Elektrogrammen. Verh. dtsch. Ges. Kreislaufforsch. 37, 433–438 (1971)Google Scholar
  18. Raschack, M.: Stereospecific differences in the relation of antiarrhythmic to inotropic activity in the optical isomers of verapamil. Abstr. 6th Int. Congr. Pharmacol., Helsinki, July 20–25, 375, 1975aGoogle Scholar
  19. Raschack M.: Wirkung von Ajmalin und seinen therapeutisch verwendeten Derivaten N-Propylajmalin und Di-monochloracetylajmalin auf funktionelle Refraktärzeit und Kontraktionskraft am Meerschweinchenvorhof sowie Aconitin-Arrhythmien an der Ratte. Arzneimittel-Forsch. 25, 639–641 (1975b)Google Scholar
  20. Schamroth, L., Krikler, D. M., Garrett, C.: Immediate effects of intravenous verapamil in cardiac arrhythmias. Brit. med. J. 1972I, 660–662Google Scholar
  21. Schlepper, M., Thormann, J., Schwarz, F.: The pharmacodynamics of orally taken verapamil and verapamil retard as judged by their negative dromotropic effects. Arzneimittel-Forsch. 25, 1452–1455 (1975)Google Scholar
  22. Singh, B. N., Vaughan Williams, E. M.: A fourth class of antidysrhythmic action? Effect of verapamil on ouabain toxicity, on atrial and ventricular intracellular potentials, and on other features of cardiac function. Cardiovasc. Res. 6, 109–119 (1972)Google Scholar
  23. Zipes, D. P., Fischer, J. C.: Effects of agents which inhibit the slow channel on sinus node automaticity and atrioventricular conduction in the dog. Circulat. Res. 34, 184–192 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Raschack
    • 1
  1. 1.Abteilung Herz-Kreislauf-Pharmakologie, Medizinische ForschungKnoll AGLudwigshafenFederal Republic of Germany

Personalised recommendations