Recovery of free enzymes from product liquors by bio-affinity adsorption: Trypsin binding by immobilised soybean inhibitor

  • P. J. Halling
  • P. Dunnill
Biotechnology and Bioengineering

Summary

Soybean trypsin inhibitor immobilised to sub-micron ferrite particles functions as an affinity adsorbent for trypsin and the adsorbed enzyme may be recovered following elution in dilute acid. Trypsin can be adsorbed from casein solutions that is has digested. Equilibrium is reached in under 2 min with an effective dissociation constant as low as 10−7 M, allowing recoveries of more than 90% of added enzyme under realistic conditions.

These results suggest that bioaffinity adsorbents could be used to recover an enzyme that has converted a macromolecular substrate. The operation of such a process is discussed, and some interactions are described that could be used with suitably high affinity adsorbents for other enzymes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charles, M., Coughlin, R.W., Hasselberger, F.X. (1974). Biotechnol. Bioeng. 16, 1553–1556Google Scholar
  2. Dunnill, P., Lilly, M.D. (1974). Biotechnol. Bioeng. 16, 987–990Google Scholar
  3. Fossum, K., Whitaker, J.R. (1968). Arch. Biochem. Biophys. 125, 367–375Google Scholar
  4. Green, N.M. (1966). Biochem. J. 101, 774–780Google Scholar
  5. Green, N.M. (1975). Adv. Protein Chem. 29, 85–133Google Scholar
  6. Halling, P.J., Dunnill, P. (1978). Biotechnol. Bioeng. (in press)Google Scholar
  7. Inouye, K., Tonomura, B., Hiromi, K., Sato, S., Murao, S. (1977). J. Biochem., Tokyo 82, 961–967Google Scholar
  8. Laskowski, M., Jr., Sealock, R.W. (1972). In: The Enzymes, P.D. Boyer, ed., vol. 3, 3rd ed., pp. 375–473. New York: AcademicGoogle Scholar
  9. Lazdunski, M., Delaage, M. (1965). Biochim. Biophys. Acta 105, 541–561Google Scholar
  10. Leemputten, E., van, Horisberger, M. (1976). Biotechnol. Bioeng. 18, 587–590Google Scholar
  11. Lis, H., Sharon, N. (1973). Annual Rev. Biochem. 42, 541–574Google Scholar
  12. Melrose, G.J.H. (1971). Rev. Pure Applied Chem. 21, 83–119Google Scholar
  13. Munro, P.A., Dunnill P., Lilly, M.D. (1977). Biotechnol. Bioeng. 19, 101–124Google Scholar
  14. O'Neill, S.P., Wykes, J.R., Dunnill, P., Lilly, M.D. (1971). Biotechnol. Bioeng. 13, 319–322Google Scholar
  15. Oxender, D.L. (1974). Biomembranes 5, 25–79Google Scholar
  16. Rice, R.H., Means, G.E., Brown, W.D. (1977). Biochim. Biophys. Acta 492, 316–321Google Scholar
  17. Scatchard, G. (1949). Ann. New York. Acad. Sci. 51, 660–672Google Scholar
  18. Shainkin, R., Birk, Y. (1970). Biochim. Biophys. Acta 221, 502–513Google Scholar
  19. Umezawa, H. (1976). Methods Enzymol. 45, 678–695Google Scholar
  20. Uozumi, T., Ishino, K., Beppu, T., Arima, K. (1976). J. Biol. Chem. 251, 2808–2813Google Scholar
  21. Walsh, K.A., Wilcox, P.E. (1970). Methods Enzymol. 19, 31–41Google Scholar
  22. Weber, G. (1975). Adv. Protein Chem. 29, 1–83Google Scholar
  23. Wilchek, M., Jakoby, W.B. (1974). Methods Enzymol. 34, 3–10Google Scholar
  24. Wykes, J.R., Dunnill, P., Lilly, M.D. (1971). Biochim. Biophys. Acta 250, 522–529Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. J. Halling
    • 1
  • P. Dunnill
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringUniversity College LondonLondonUK

Personalised recommendations