Pars compacta of the substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake

  • Gordon K. Hodge
  • Larry L. Butcher


Precise, bilateral radio-frequency lesions of pars compacta of the substantia nigra in rats resulted in the immediate and sustained appearance of hyperactivity, but such lesions did not produce significant alterations in food or water intake. These behavioral effects were correlated with considerable, histochemically assessed loss of dopamine terminals in the caudate-putamen complex, but dopamine innervation in nucleus accumbens and other forebrain areas was only slightly affected. The magnitude of motor activity increase was positively correlated with the degree of pars compacta involvement. Animals with lesions in the median raphe and adjacent reticular formation also displayed chronic hyperactivity. In contrast to rats receiving discrete radio-frequency lesions of pars compacta, animals with bilateral mesencephalic ablations produced by 6-hydroxydopamine (6-OHDA, 8 μg/4 μl or 4 μg/2 μl in combination with desipramine pretreatment) displayed poverty of movement. Furthermore, significant, dose-dependent decrements in food and water intake were seen after 6-OHDA. The nonselective component of such lesions was frequently large and irregular in shape. Occasional ablations produced by this neurotoxin, however, appeared more selective in that damage was confined primarily to pars compacta. Nonetheless, the best correlate of aphagia and adipsia associated with 6-OHDA treatment was lesion size, regardless of the extent of pars compacta or other nigral involvement. We conclude that aphagia and adipsia concomitant to 6-OHDA lesions of the substantia nigra result from the incidental destruction of extra-nigral systems. Virtually complete, but precise, lesions of pars compacta do not produce aphagia and adipsia. While our results are consistent with the notion that the substantia nigra serves an important role in the regulation of motor activity, they provide no support for the conjecture that it is importantly involved in mediating ingestive behaviors.

Key words

Consummatory behavior Motor activity Dopamine Lesions Nigrostriatal system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid, Y., Javoy, F., Glowinski, J., Bouvet, D., Sotelo, D.: Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res. 58, 291–301 (1973)Google Scholar
  2. Arnt, J., Scheel-Krüger, J.: Intranigral GABA antagonists produce dopamine-independent biting in rats. Eur. J. Pharmacol. 62, 51–61 (1980)Google Scholar
  3. Breese, G. R., Smith, R. D., Cooper, B. R., Hollister, A. S., Kraemer, G., McKinney, W. T.: Use of neurocytotoxic compounds in neuropsychopharmacology. In: Chemical tools in catecholamine research (G. Jonsson, T. Malmfors, C. Sachs, eds.), Vol. 1, pp. 335–342. Amsterdam: North Holland Publish. Co. 1975Google Scholar
  4. Brook, C., Iversen, S. D.: Changed eating and locomotor behavior in the rat after 6-hydroxydopamine lesions to the substantia nigra. Neuropharmacology 14, 95–105 (1975)Google Scholar
  5. Butcher, L. L.: Degenerative processes after punctate intracerebral administration of 6-hydroxydopamine. J. Neural Transm. 37, 189–208 (1975)Google Scholar
  6. Butcher, L. L., Talbot, K.: Chemical communication processes involving neurons: vocabulary and syntax. In: Cholinergic-monoaminergic interactions in the brain (L. L. Butcher, ed.), pp. 3–22. New York: Academic Press 1978aGoogle Scholar
  7. Butcher, L. L., Talbot, K.: Acetylcholinesterase in rat nigroneostriatal neurons: experimental verification and evidence for cholinergic-dopaminergic interactions in the substantia nigra and caudate-putamen complex. In: Cholinergic-monoaminergic interactions in the brain (L. L. Butcher, ed.), pp. 25–95. New York: Academic Press 1978bGoogle Scholar
  8. Butcher, L. L., Hodge, G. K.: Selective bilateral lesions of pars compacta of the substantia nigra: effects on motor processes and ingestive behaviors. In: Advances in neurology (Parkinson's disease) (L. I. Poirier, T. L. Sourkes, P. J. Bedard, eds.), Vol. 24, pp. 71–86. New York: Raven Press 1979Google Scholar
  9. Butcher, L. L., Eastgate, S. M., Hodge, G. K.: Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration: comparison with copper sulfate and factors governing the deportment of fluids injected into brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 285, 31–70 (1974)Google Scholar
  10. Butcher, L. L., Hodge, G. K., Schaeffer, J. C.: Degenerative processes after intraventricular infusion of 6-hydroxydopamine. In: Chemical tools in catecholamine research (G. Jonsson, T. Malmfors, C. Sachs, eds.), Vol. 1, pp. 83–90. Amsterdam: North Holland Publish. Co. 1975Google Scholar
  11. Costall, B., Olley, J. E.: Cholinergic and neuroleptic induced catalepsy: modification by lesions in the globus pallidus and substantia nigra. Neuropharmacology 10, 581–594 (1971)Google Scholar
  12. Creese, I., Iversen, S. D.: The pharmacological and anatomical substrate of the amphetamine response in the rat. Brain Res. 83, 419–436 (1975)Google Scholar
  13. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, Suppl. 232, 1–55 (1965)Google Scholar
  14. de la Torre, J. C., Surgeon, J. W.: A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry 49, 81–93 (1976)Google Scholar
  15. Fallon, J. J., Moore, R. Y.: Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projections to basal forebrain and neostriatum. J. Comp. Neurol. 180, 545–579 (1978)Google Scholar
  16. Fibiger, H. C., Zis, A. P., McGeer, E. G.: Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: similarities to the lateral hypothalamic syndrome. Brain Res. 55, 135–148 (1973)Google Scholar
  17. Galey, D., Le Moal, M.: Locomotor activity after various radiofrequency losions of the limbic midbrain area in the rat. Evidence for a particular role of the ventral mesencephalic tegmentum. Life Sci. 19, 677–684 (1976)Google Scholar
  18. Galey, D., Simon, H., Le Moal, M.: Behavioral and anatomical effects of 6-OHDA injections in the ventral mesencephalic tegmentum in the rat. Brain Res. 107, 207–208 (1976)Google Scholar
  19. Gladfelter, W. E., Brobeck, J. R.: Decreased spontaneous locomotor activity in the rat induced by hypothalamic lesions. Am. J. Physiol. 203, 811–817 (1962)Google Scholar
  20. Gold, R. M.: Aphagia and adipsia following unilateral and bilaterally asymmetrical lesions in rats. Physiol. Behav. 2, 211–220 (1967)Google Scholar
  21. Grossman, S. P., Grossman, L.: Persisting deficits in rats “recovered” from transections of fiber which enter or leave hypothalamus laterally. J. Comp. Physiol. Psychol. 85, 515–517 (1973)Google Scholar
  22. Gulley, R. L., Wood, R. L.: The fine structure of the neurons in the rat substantia nigra. Tissue Cell 3, 675–690 (1971)Google Scholar
  23. Hodge, G. K.: Analysis of the role played by the substantia nigra in the mediation of ingestive, locomotor, and rotational behaviours as revealed by surgical and pharmacological manipulations. (Doctoral dissertation, UCLA, 1977.) Diss. Abs. Internat. 38, 953B-954B (1977) (Ann Arbor MI: University Microfilms International No. 77-17, 229)Google Scholar
  24. Hodge, G. K., Butcher, L. L.: Role of pars compacta of the substantia nigra in circling behavior. Pharmacol. Biochem. Behav. 10, 695–709 (1979)Google Scholar
  25. Hökfelt, T., Ungerstedt, U.: Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res. 60, 269–297 (1973)Google Scholar
  26. Iversen, S. D.: The effect of surgical lesions to frontal cortex and substantia nigra on amphetamine responses in rats. Brain Res. 31, 395–311 (1971)Google Scholar
  27. Iversen, S. D., Kelly, P. H.: The use of 6-hydroxydopamine (6-OHDA) techniques for studying the pathways involved in drug-induced motor behaviors. In: Chemical tools in catecholamine research (G. Jonsson, T. Malmfors, C. Sachs, eds.), Vol. 1, pp. 311–318. Amsterdam: North Holland Publish. Co. 1975Google Scholar
  28. Jacobs, B. L., Wise, W. D., Taylor, K. M.: Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats. Brain Res. 79, 353–361 (1974)Google Scholar
  29. Kelly, P. H., Seviour, P. W., Iversen, S. D.: Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94, 507–522 (1975)Google Scholar
  30. König, J. F. R., Klippel, R. A.: The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Baltimore: Williams and Wilkins 1963Google Scholar
  31. Koob, G. F., Stinus, L., Le Moal, M., Roberts, D. C. S., Bloom, F. E.: Behavioral effects of lesions to the mesolimbic dopamine neurons. Soc. Neurosci. Abstr. 5, 652 (1979)Google Scholar
  32. Lehmann, J., Fibiger, H. C.: Acetylcholinesterase in the substantia nigra and caudate-putamen of the rat: Properties and localization in dopaminergic neurons. J. Neurochem. 30, 615–624 (1978)Google Scholar
  33. Le Moal, M., Stinus, L., Galey, D.: Radiofrequency lesion of the ventral mesencephalic tegmentum: neurological and behavioral considerations. Exp. Neurol. 50, 521–535 (1976)Google Scholar
  34. Lénárd, L.: Food and water intake after bilateral caudate and putamen lesions in rats. Acta Physiol. Acad. Sci. Hung. 50, 27–34 (1977)Google Scholar
  35. Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol. Scand., Suppl. 412, 1–48 (1974)Google Scholar
  36. Lorden, J. F., Oltmans, G. A., Dawson, R., Jr., Callahan, M.: Evaluation of the non-specific effects of catecholamine and serotonin neurotoxins by injection into the medial forebrain bundle of the rat. Pharmacol. Biochem. Behav. 10, 79–86 (1979)Google Scholar
  37. Lyon, M., Halpern, M., Mintz, E.: The significance of the mesencephalon for coordinated feeding behavior. Acta Physiol. Scand. 44, 323–346 (1968)Google Scholar
  38. Marshall, J. F., Richardson, J. S., Teitelbaum, P.: Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87, 808–830 (1974)Google Scholar
  39. Mason, S. T.: Noradrenaline and behavior. Trends in Neurosci. 2, 82–84 (1979)Google Scholar
  40. Misantone, L. J.: Effects of damage to the monoamine axonal constituents of the medial forebrain bundle in reactivity to foot shock and ingestive behavior in the rat. Exp. Neurol. 50, 448–464 (1976)Google Scholar
  41. Nauta, W. J. H., Smith, G. P., Faull, R. L. M., Domesick, V. B.: Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3, 385–401 (1978)Google Scholar
  42. Neill, D. B., Grant, L. D., Grossman, S. P.: Selective potentiation of locomotor effects of amphetamine by midbrain raphe lesions. Physiol. Behav. 9, 655–657 (1972)Google Scholar
  43. Olianas, M. C., DeMontis, G. M., Concu, A., Tagliamonte, A., DiChiara, G.: Intranigral kainic acid: evidence for nigral non-dopaminergic neurons controlling posture and behavior in a manner opposite to the dopaminergic ones. Eur. J. Pharmacol. 49, 223–232 (1978)Google Scholar
  44. Oltmans, G. A., Harvey, J. A.: LH syndrome and brain catechol-amine levels after lesions of the nigrostriatal bundle. Physiol. Behav. 8, 69–78 (1972)Google Scholar
  45. Oltmans, G. A., Lorden, J. F., Margules, D. L.: Food intake and body weight: effects of specific and non-specific lesions in the midbrain path of the ascending noradrenergic neurons of the rat. Brain Res. 128, 293–308 (1977)Google Scholar
  46. Parker, S. W., Feldman, S. M.: Effect of mesencephalic lesions on feeding behavior in rats. Exp. Neurol. 17, 313–326 (1967)Google Scholar
  47. Poirier, L. J., Langelier, P., Roberge, A., Boucher, R., Kitsikis, A.: Non-specific histopathological changes induced by the intracerebral injection of 6-hydroxy-dopamine (6-OH-DA). J. Neurol. Sci. 16, 401–416 (1972)Google Scholar
  48. Roberts, D. C. S., Zis, A. P., Fibiger, H. C.: Ascending catecholamine pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine. Brain Res. 93, 441–454 (1975)Google Scholar
  49. Skinner, J. E.: Neuroscience: a laboratory manual, p. 137. Philadelphia: Sounders 1971Google Scholar
  50. Sotclo, C., Javoy, F., Agid, Y., Glowinski, J.: Injection of 6-hydroxydopamine in the substantia nigra of the rat. I. Morphological study. Brain Res. 58, 269–290 (1973)Google Scholar
  51. Stern, G.: The effects of lesions in the substantia nigra. Brain 89, 449–478 (1966)Google Scholar
  52. Stricker, E. M., Zigmond, M. J.: Brain catecholamines and the lateral hypothalamic syndrome. In: Hunger: basic mechanisms and clinical implications (D. Novin, W. Wyrwicka, G. Bray, eds.), pp. 19–32. New York: Raven Press 1976Google Scholar
  53. Stricker, E. M., Friedman, M. I., Zigmond, M. J.: Glucoregulatory feeding by rats after intraventricular 6-hydroxydopamine or lateral hypothalamus lesions. Science 189, 895–897 (1975)Google Scholar
  54. Tassin, J.-P., Stinus, L., Simon, H., Blanc, G., Thierry, A.-M., Le Moal, M., Cardo, B., Glowinski, J.: Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto-cortical dopaminergic innervation in the rat. Brain Res. 141, 267–281 (1978)Google Scholar
  55. Teitelbaum, P., Epstein, A. N.: The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychopharmacol. Rev. 69, 74–90 (1962)Google Scholar
  56. Thompson, R., Rich, I., Langer, S. K.: Lesion studies on the functional significance of the posterior thalamo-mesencephalic tract. J. Comp. Neurol. 123, 29–44 (1964)Google Scholar
  57. Ungerstedt, U.: Histochemical studies on the effects of intracerebral and intraventricular injections of 6-hydroxydopamine on monoamine neurons in the rat brain. In: 6-Hydroxydopamine and catecholamine neurons (T. Malmfors, H. Thoenen, eds.), pp. 101–127. Amsterdam: North Holland Publish. Co. 1971aGoogle Scholar
  58. Ungerstedt, U.: Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiol. Scand., Suppl. 367, 1–48 (1971b)Google Scholar
  59. Ungerstedt, U.: Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol. Scand., Suppl. 367, 49–68 (1971c)Google Scholar
  60. Ungerstedt, U.: Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand., Suppl. 367, 95–122 (1971d)Google Scholar
  61. Ungerstedt, U.: Brain dopamine neurons and behavior. In: The neurosciences: third study program (F. O. Schmitt, F. G. Worden, eds.), pp. 695–703. Cambridge, MA: MIT Press 1974Google Scholar
  62. Ungerstedt, U., Marshall, J.: Nerve degeneration in functional studies: experiments illustrating the problem of lesion specificity and compensatory supersensitivity. In: Chemical tools in catecholamine research (G. Jonsson, T. Malmfors, C. Sachs, eds.), Vol. 1, pp. 311–318. Amsterdam: North Holland Publish. Co. 1975Google Scholar
  63. Winer, B. J.: Statistical principles in experimental design, 2nd ed. New York: McGraw-Hill 1971Google Scholar
  64. Wolgin, D. L., Cytawa, J., Teitelbaum, P.: The role of activation in the regulation of food intake. In: Hunger: basic mechanisms and clinical implications (D. Novin, W. Wyrwicka, G. Bray, eds.), pp. 179–191. New York: Raven Press 1976Google Scholar
  65. Zeigler, H. P., Karten, H. J.: Central trigeminal structures and the lateral hypothalamic syndrome in the rat. Science 186, 636–638 (1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Gordon K. Hodge
    • 1
  • Larry L. Butcher
    • 2
  1. 1.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Psychology and Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations