Biochemical Genetics

, Volume 24, Issue 7–8, pp 509–527 | Cite as

Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene

  • David R. Schott
  • Madeline C. Baldwin
  • Victoria Finnerty


The biochemical effects of several newly induced low xanthine dehydrogenase (lxd) mutations in Drosophila melanogaster were investigated. When homozygous, all lxd alleles simultaneously interrupt each of the molybdoenzyme activities to approximately the same levels: xanthine dehydrogenase, 25%; aldehyde oxidase, 12%; pyridoxal oxidase, 0%; and sulfite oxidase, 2% as compared to the wild type. In order to evaluate potentially small complementation or dosage effects, mutant stains were made coisogenic for 3R. These enzymes require a molybdenum cofactor, and lxd cofactor levels are also reduced to less than 10% of the wild type. These low levels of molybdoenzyme activities and cofactor activity are maintained throughout development from late larval to adult stages. The lxd alleles exhibit a dosage-dependent effect on molybdoenzyme activities, indicating that these mutants are leaky for wild-type function. In addition, cofactor activity is dependent upon the number of lxd+ genes present. The lxd mutation results in the production of more thermolabile XDH and AO enzyme activities, but this thermolability is not transferred with the cofactor to a reconstituted Neurospora molybdoenzyme. The lxd gene is localized to salivary region 68 A4-9, 0.1 map unit distal to the superoxide dismutase (Sod) gene.

Key words

Drosophila melanogaster molybdoenzymes low xanthine dehydrogenase mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaron, C. S., Nardin, H. E., and Lee, W. R. (1977). Glass filter supports for treatment of adult D. melanogaster with chemical mutagens. Dros. Info. Serv. 52166.Google Scholar
  2. Akam, M. E., Roberts, D. B., Richards, G. P., and Ashburner, M. (1978). Drosophila: The genetics of two major larval proteins. Cell 13215.Google Scholar
  3. Amy, N. K., and Rajagopalan, K. V. (1979). Characterization of molybdenum cofactor from Escherichia coli. J. Bacteriol. 140114.Google Scholar
  4. Baker, B. (1973). The maternal and zygotic control of development by cinnamon, a new mutant in Drosophila melanogaster. Dev. Biol. 33429.Google Scholar
  5. Beauchamp, C., and Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44276.Google Scholar
  6. Bentley, M. M., and Williamson, J. H. (1979). The control of aldehyde oxidase and xanthine dehydrogenase activities by the cinnamon gene in Drosophila melanogaster. Can. J. Genet. Cytol. 21457Google Scholar
  7. Birkett, J. A., and Rowlands, R. T. (1981). Chlorate resistance and nitrate assimilation in industrial strains of Penicillium chrysogenum. J. Gen. Microbiol. 123281.Google Scholar
  8. Bodenstein, D. (1950). The postembryonic development of Drosophila. In Demerec, M. (ed.), Biology of Drosophila Hafner, New York, pp. 275–367.Google Scholar
  9. Bogaart, A. M., and Bernini, L. F. (1981). The molybdoenzyme system of Drosophila melanogaster. I. Sulfite oxidase: Identification of the enzyme in maroonlike (mal), lowxanthine dehydrogenase (lxd) and cinnamon (cin) flies. Biochem. Genet. 19929.Google Scholar
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72248.Google Scholar
  11. Browder, L. W., and Williamson, J. H. (1976). The effects of cinnamon on xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase activity during development in Drosophila melanogaster. Dev. Biol. 53241.Google Scholar
  12. Buchanan, R. J., and Wray, J. L. (1982). Isolation of molybdenum cofactor defective cell lines of Nicotiana tabacum. Mol. Gen. Genet. 188228.Google Scholar
  13. Chovnick, A., Finnerty, V., Schalet, A., and Duck, P. (1969). Studies on genetic organization in higher organisms. I. Analysis of a complex gene in Drosophila melanogaster. Genetics 62145.Google Scholar
  14. Chovnick, A., Gelbart, W., McCarron, M., Osmond, B., Candido, D. P. M., and Baillie, D. L. (1976). Organization of the rosy locus in Drosophila melanogaster: Evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics 84233.Google Scholar
  15. Chovnick, A., McCarron, M., Hilliker, A., O'Donnell, J., Gelbart, W., and Clark, S. (1977). Gene organization in Drosophila. CSHSQB 421011.Google Scholar
  16. Chovnick, A., McCarron, M., Clark, S. H., Hilliker, A. J., and Rushlow, C. A. (1980). Structural and functional organization of a gene in Drosophila melanogaster. In Siddiqi, O., Babu, P., Hall, L. M., and Hall, J. C. (eds.), Development and Neurobiology of Drosophila Plenum, New York, pp. 3–23.Google Scholar
  17. Collins, J. F., and Glassman, E. (1969). A third locus (lpo) affecting pyridoxal oxidase in Drosophila melanogaster. Genetics 61833.Google Scholar
  18. Courtright, J. B. (1967). Polygenic control of aldehyde oxidase in Drosophila. Genetics 5725.Google Scholar
  19. Crosby, M. A., and Meyerowitz, E. M. (1986). Lethal mutations flanking the 68C glue gene cluster on chromosome 3 of Drosophila melanogaster. Genetics 112785–802.Google Scholar
  20. Cypher, J. J., Tedesco, J. L., Courtright, J. B., and Kumaran, A. K. (1982). Tissue-specific and substrate-specific detection of aldehyde and pyridoxal oxidase in larval and imaginal tissues of Drosophila melanogaster. Biochem. Genet. 20315Google Scholar
  21. Dickinson, W. J. (1970). The genetics of aldehyde oxidase in Drosophila melanogaster. Genetics 66487.Google Scholar
  22. Dickinson, W. J., and Weisbrod, E. (1976). Gene regulation in Drosophila: Independent expression of closely linked, related structural loci. Biochem. Genet. 14709.Google Scholar
  23. Fernandez, E., and Matagne, R. F. (1984). Genetic analysis of nitrate reductase-deficient mutants in Chlamydomonas reinhardii. Curr. Genet. 8635.Google Scholar
  24. Finnerty, V., and Johnson, G. (1979). Post-translational modification as a potential explanation of high levels of enzyme polymorphism: Xanthine dehydrogenase and aldehyde oxidase in Drosophila melanogaster. Genetics 91695.Google Scholar
  25. Finnerty, V., McCarron, M., and Johnson, G. (1979). Gene expression in Drosophila: Posttranslational modification of aldehyde oxidase and xanthine dehydrogenase. Mol. Gen. Genet. 17237.Google Scholar
  26. Forrest, H., Hanly, E. W., and Lagowski, J. M. (1961). Biochemical differences between the mutants rosy-2 and marron-like of Drosophila melanogaster. Genetics 401455.Google Scholar
  27. Franklin, I. R., and Chew, G. K. (1971). Tetrazolium oxidase. Dros. Info. Serv. 4738.Google Scholar
  28. Glassman, E. (1965). Genetic regulation of xanthine dehydrogenase in Drosophila melanogaster. Fed. Proc. 241243.Google Scholar
  29. Jelnes, J. E. (1971). Identification of hexokinases and localisation of a fructokinase and a tetrazolium oxidase locus in Drosophila melanogaster. Hereditas 67291.Google Scholar
  30. Johnson, J. L., and Rajagopalan, K. V. (1982). Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc. Natl. Acad. Sci. 796856.Google Scholar
  31. Johnson, J. L., Waud, W. R., Rajagopalan, K. V., Duran, M., Bremer, F., and Wadman, S. (1980a). Inborn errors of molybdenum metabolism: Combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc. Natl. Acad. Sci. 773715.Google Scholar
  32. Johnson, J. L., Hainline, B. E., and Rajagopalan, K. V. (1980b). Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase and nitrate reductase. J. Biol. Chem. 2551783.Google Scholar
  33. Jones, H. P., Johnson, J. L., and Rajagopalan, K. V. (1977). In vitro reconstitution of demolybdo-sulfite oxidase by molybdate. J. Biol. Chem. 2524988.Google Scholar
  34. Keller, E. C., Jr., and Glassman, E. (1964). Xanthine dehydrogenase: Differences in activity among Drosophila strains. Science 14340.Google Scholar
  35. Keller, E. C., Jr., and Glassman, E. (1965). Phenocopies of the ma-l and ry mutants of D. melanogaster: Inhibition in vivo of xanthine dehydrogenase by 4-hydroxy-pyrazolo(3,4-d)pyrimidine. Nature 208202.Google Scholar
  36. Ketchum, P. A., and Sevilla, C. L. (1973). In vitro formation of nitrate reductase using extracts of the nitrate reductase mutant of Neurospora crassa, nit-l and Rhodospirillium rubrum. J. Bacteriol. 116600.Google Scholar
  37. Lindsley, D. L., and Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. No. 627.Google Scholar
  38. McCarron, M., O'Donnell, J., Chovnick, A., Bhullar, B. S., Hewitt, J., and Candido, E. P. M. (1979). Organization of the rosy locus in Drosophila melanogaster: Further evidence in support of a cis-acting control element adjacent to the xanthine dehydrogenase structural element. Genetics 91275.Google Scholar
  39. MacGregor, C. H., and Schnaitman, C. A. (1971). Alterations in the cytoplasmic membrane proteins of various chlorate-resistant mutants of Escherichia coli. J. Bacteriol. 108564.Google Scholar
  40. Nason, A., Lee, K. Y., Pan, S. S., and Erickson, R. H. (1974). Evidence for a molybdenum cofactor common to all molybdenum enzymes based on the in vitro assembly of assimilatory NADPH-nitrate reductase using the Neurospora mutant nit-1. In Mitchell, P. C. H. (ed.), Proc. Climax First Int. Conf. Chem. Uses Molybdenum, Univ. Reading, England, Sept. 1973, Climax Molybdenum Co., London.Google Scholar
  41. Padilla, H. M., and Nash, W. G. (1977). A further characterization of the cinnamon gene in Drosophila melanogaster. Mol. Gen. Genet. 155171.Google Scholar
  42. Pateman, J. A., Cove, D. J., Rever, B. M., and Roberts, D. B. (1964). A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature 20158.Google Scholar
  43. Shih, V. E., Abroms, I. F., Johnson, J. L., Carney, M., Mandell, R., Robb, R., Cloherty, J. P., and Rajagopalan, K. V. (1977). Sulfite oxidase deficiency: Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N. Engl. J. Med 2571022.Google Scholar
  44. Wahl, R. C., Warner, C. K., Finnerty, V., and Rajagopalan, R. V. (1982). Drosophila melanogaster ma-l mutants are defective in the sulfuration of desulfo Mo hydroxylases. J. Biol. Chem. 2573958.Google Scholar
  45. Warner, C. K., and Finnerty, V. (1981). Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. Mol. Gen. Genet. 18492.Google Scholar
  46. Warner, C. K., Watts, D. T., and Finnerty, V. (1980). Molybdenum hydroxylases in Drosophila. I. Preliminary studies of pyridoxal oxidase. Mol. Gen. Genet. 180449.Google Scholar
  47. Weeke, B. (1973). Rocket immunoelectrophoresis. Scand. J. Immunol. 2(Suppl. 1):37.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • David R. Schott
    • 1
  • Madeline C. Baldwin
    • 1
  • Victoria Finnerty
    • 1
  1. 1.Biology DepartmentEmory UniversityAtlanta

Personalised recommendations