Biochemical Genetics

, Volume 23, Issue 7–8, pp 607–622 | Cite as

Dietary ethanol and lipid synthesis in Drosophila melanogaster

  • Billy W. Geer
  • Marilyn L. Langevin
  • Stephen W. McKechnie


When cultured on a defined diet, ethanol was an efficient substrate for lipid synthesis in wild-type Drosophila melanogaster larvae. At certain dietary levels both ethanol and sucrose could displace the other as a lipid substrate. In wild-type larvae more than 90% of the flux from ethanol to lipid was metabolized via the alcohol dehydrogenase (ADH) system. The ADH and aldehyde dehydrogenase activities of ADH were modulated in tandem by dietary ethanol, suggesting that ADH provided substrate for lipogenesis by degrading ethanol to acetaldehyde and then to acetic acid. The tissue activity of catalase was suppressed by dietary ethanol, implying that catalase was not a major factor in ethanol metabolism in larvae. The activities of lipogenic enzymes, sn-glycerol-3-phosphate dehydrogenase, fatty acid synthetase (FAS), and ADH, together with the triacylglycerol (TG) content of wild-type larvae increased in proportion to the dietary ethanol concentration to 4.5% (v/v). Dietary ethanol inhibited FAS and repressed the accumulation of TG in ADH-deficient larvae, suggesting that the levels of these factors may be subject to a complex feedback control.

Key words

ethanol alcohol dehydrogenase lipid Drosophilia carbohydrate nutrition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beenakkers, A. M. T. (1969). Carbohydrate and fat as a fuel for insect flight. A comparative study. J. Insect Physiol. 15353.Google Scholar
  2. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities in protein utilizing the principle of protein dye binding. Anal. Biochem. 72248.Google Scholar
  3. Cavener, D. R., and Clegg, M. T. (1981). Multigenic response to ethanol in Drosophila melanogaster. Evolution 351.Google Scholar
  4. Cypher, J. J., Tedesco, J. L., Courtright, J. B., and Kumaran, A. K. (1982). Tissue-specific and substrate-specific detection of aldehyde and pyridoxal oxidase in larval and imaginal tissues of Drosophila melanogaster. Biochem. Genet. 20315.Google Scholar
  5. David, J. R., Bocquet, C., Arens, M., and Fouillet, P. (1976). Biological role of alcohol dehydrogenase in the tolerance of Drosophila melanogaster to aliphatic alcohols: Utilization of an ADH-null mutant. Biochem. Genet. 14989.Google Scholar
  6. David, J., Bocquet, C., Van Herrewege, J., Fouillet, P., and Arens, M. (1978). Alcohol metabolism in Drosophila melanogaster: Uselessness of the most active aldehyde oxidase produced by the aldox locus. Biochem. Genet. 16203.Google Scholar
  7. David, J. R., Van Herrewege, J., De Scheemaeker-Louis, M., and Pla, E. (1981). Drosophila alcohol dehydrogenase: Detoxification of isopropanol and acetone, substances not used in energy metabolism. Heredity 47263.Google Scholar
  8. Deltombe-Lietaert, M. C., Delcour, J., Lenelle-Nonfort, N., and Elens, A. (1979). Ethanol metabolism in Drosophila melanogaster. Experientia 35579.Google Scholar
  9. Dickinson, W. J., and Gaughan, S. (1981). Aldehyde oxidase in Drosophila: Contributions of several enzymes to observed activity patterns. Biochem. Genet. 19567.Google Scholar
  10. Finnerty, V. (1976). Genetic units of Drosophila—simple cistrons. In Novitsky, E., and Ashburner, M. (eds.), The Genetics and Biology of Drosophila, Academic Press, New York, Vol. 1b, pp. 721–765.Google Scholar
  11. Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226497.Google Scholar
  12. Garcin, F., Kasiencsuk, D., Radouco-Thomas, S., Cote, J., and Radouco-Thomas, C. (1981). NAD+-dependent acetaldehyde oxidation in Drosophila. Prog. Neuro-Psychopharmacol. 5619.Google Scholar
  13. Garcin, F., Cote, J., Radouco-Thomas, S., Kasienczuk, D., Chawla, S., and Radouco-Thomas, C. (1983). Acetaldehyde oxidation in Drosophila melanogaster and Drosophila simulans: Evidence for the presence of an NAD+-dependent dehydrogenase. Comp. Biochem. Physiol. 75B205.Google Scholar
  14. Garcin, F., Larocahelle, C., Lau You Hin, G., and Cote, J. (1985). Acetaldehyde oxidation in Drosophila null mutants for alcohol dehydrogenase. Experientia (in press).Google Scholar
  15. Geer, B. W., and Downing, B. C. (1972). Changes in lipid and protein syntheses during spermatozoan development and thoracic tissue maturation in Drosophila hydei. Wilhelm Roux Arch. EntwMech. Org. 17083.Google Scholar
  16. Geer, B. W. and Laurie-Ahlberg, C. C. (1984). Genetic variation in the dietary sucrose modulation of enzyme activities in Drosophila melanogaster. Genet. Res. 43307.Google Scholar
  17. Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A., and Yemm, S. J. (1976). Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. I. Modulation by dietary carbohydrate and lipid. J. Exp. Zool. 19515.Google Scholar
  18. Geer, B. W., Lindel, D. L., and Lindel, D. M. (1979). Relationship of the oxidative pentose shunt pathway to lipid synthesis in Drosophila melanogaster. Biochem. Genet. 17867.Google Scholar
  19. Geer, B. W., McKechnie, S. W., and Langevin, M. L. (1983). Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. J. Nutr. 1131632.Google Scholar
  20. Gibson, J. B., May, T. W., and Wilks, A. V. (1981). Genetic variation at the alcohol dehydrogenase locus in Drosophila melanogaster in relation to environmental variation: Ethanol levels in breeding sites and allozyme frequencies. Oecologia (Berl.) 51191.Google Scholar
  21. Heinstra, P. W. H., Eisses, K. T., Schoonen, W. G. E. J., Aben, W., deWinter, A. J., van der Horst, D. J., van Marrewijk, W. J. A., Beenakkers, A. M. T., Scharloo, W., and Thorig, G. E. W. (1983). A dual function of alcohol dehydrogenase in Drosophila. Genetica 60129.Google Scholar
  22. Horie, Y. (1968). The oxidation of NADPH by the soluble fraction of the fat body of the silkworm, Bombyx mori L. J. Insect Physiol. 14417.Google Scholar
  23. Lubinsky, S., and Bewley, G. C. (1979). Genetics of catalase in Drosophila melanogaster: Rates of synthesis and degradation of the enzyme in flies aneuploid and euploid for the structural gene. Genetics 91723.Google Scholar
  24. McKechnie, S. W., and Geer, B. W. (1984). Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate. Insect Biochem. 14231.Google Scholar
  25. McKechnie, S. W., and Morgan, P. (1982). Alcohol dehydrogenase polymorphism of Drosophila melanogaster: Aspects of alcohol and temperature variation in the larval environment. Aust. J. Biol. Sci. 3585.Google Scholar
  26. O'Brien, S. J., and MacIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins of Drosophila. In Ashburner, M., and Wright, T. (eds.), The Genetics and Biology of Drosophila, Academic Press, New York, Vol. 2a, pp. 395–551.Google Scholar
  27. Parsons, P. A. (1980). Ethanol utilisation: threshold differences among six closely related species of Drosophila. Aust. J. Zool. 28535.Google Scholar
  28. Pinter, J. K., Hayashi, J. A., and Watson, J. A. (1967). Enzymatic assay of glycerol, dihydroxyacetone and glyceraldehyde. Arch. Biochem. Biophys. 121404.Google Scholar
  29. Rognstad, R., and Grunnet, N. (1979). Enzymatic pathways of ethanol metabolism. In Majchrowicz, E., and Noble, E. P. (eds.), Biochemistry and Pharmacology of Ethanol Plenum Press, New York, Vol. 1, pp. 65–87.Google Scholar
  30. Van Herrewege, J., David, J. R., and Granthan, R. (1980). Dietary utilization of aliphatic alcohols by Drosophila. Experientia 36846.Google Scholar
  31. Weiner, H. (1979a). Aldehyde dehydrogenase: Mechanism of action and possible physiological roles. In Majchrowicz, E., and Noble, E. P. (eds.), Biochemistry and Pharmacology of Ethanol Plenum Press, New York, Vol. 1, pp. 107–124.Google Scholar
  32. Weiner, H. (1979b). Acetaldehyde metabolism. In Majchrowicz, E., and Noble, E. P. (eds.), Biochemistry and Pharmacology of Ethanol Plenum Press, New York, Vol. 1, pp. 125–144.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Billy W. Geer
    • 1
  • Marilyn L. Langevin
    • 1
  • Stephen W. McKechnie
    • 2
  1. 1.Department of BiologyKnox CollegeGalesburg
  2. 2.Department of GeneticsMonash UniversityClaytonAustralia

Personalised recommendations