International Journal of Thermophysics

, Volume 10, Issue 5, pp 953–962 | Cite as

Application of rough hard-sphere theory to diffusion in n-alkanes

  • C. Erkey
  • J. B. Rodden
  • M. A. Matthews
  • A. Akgerman
Article

Abstract

Tracer diffusion coefficients are reported for n-alkane solutes in n-dodecane, n-eicosane, n-eicosane, and n-octacosane in the temperature range 304–533 K at 1.38 MPa. Rough hard-sphere theory is used to interpret the data. The translational-rotational coupling parameters are determined for each solute-solvent pair at each temperature. The nature of the coupling parameter and the possibility of relating it to molecular properties and temperature in a homologous series are discussed.

Key words

hard-sphere theory n-alkanes roughness factor tracer diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Chandler, J. Chem. Phys. 62:1358 (1975).Google Scholar
  2. 2.
    S. Chapman and T. C. Cowling, Mathematical Theory of Nonuniform Gases, 3rd ed. (Cambridge University, Cambridge, England, 1970).Google Scholar
  3. 3.
    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys. 54:1523 (1971).Google Scholar
  4. 4.
    S. H. Chen, H. T. Davis, and D. F. Evans, J. Chem. Phys. 75:1422 (1981).Google Scholar
  5. 5.
    S. H. Chen, H. T. Davis, and D. F. Evans, J. Chem. Phys. 77:2540 (1982).Google Scholar
  6. 6.
    M. A. Matthews and A. Akgerman, J. Chem. Phys. 87:2285 (1987).Google Scholar
  7. 7.
    B. J. Alder, W. E. Alley, and J. H. Dymond, J. Chem. Phys. 61:1415 (1974).Google Scholar
  8. 8.
    A. J. Easteal and L. A. Woolf, Personal communication (1988).Google Scholar
  9. 9.
    D. F. Evans, T. Tominaga, and H. T. Davis, J. Chem. Phys. 74:1298 (1981).Google Scholar
  10. 10.
    J. H. Dymond and L. A. Woolf, J. Chem. Soc. Faraday Trans. I 78:991 (1982).Google Scholar
  11. 11.
    M. A. Matthews and A. Akgerman, A.I.Ch.E.J. 33:881 (1987).Google Scholar
  12. 12.
    J. B. Rodden, Ph.D. dissertation (Texas A&M University, College Station, 1988).Google Scholar
  13. 13.
    J. H. Dymond, Chem. Soc. Rev. 14:317 (1985).Google Scholar
  14. 14.
    R. O. Watts and I. J. McGee, Liquid State Chemical Physics (Wiley, New York, 1976).Google Scholar
  15. 15.
    P. Protopapas, H. C. Henderson, and N. A. D. Parlee, J. Chem. Phys. 59:15 (1973).Google Scholar
  16. 16.
    D. W. Brazier and G. R. Freeman, Can. J. Chem. 47:893 (1969).Google Scholar
  17. 17.
    K. R. Harris, J. Chem. Soc. Faraday Trans. I 78:2265 (1982).Google Scholar
  18. 18.
    S. F. Y. Li, R. D. Trengove, W. A. Wakeham, and M. Zalaf, Int. J. Thermophys. 7:273 (1986).Google Scholar
  19. 19.
    H. Ertl and F. A. Dullien, A.I.Ch.E.J. 19:1215 (1973).Google Scholar
  20. 20.
    A. J. Easteal, L. A. Woolf, and D. L. Jolly, Physica 121A:286 (1983).Google Scholar
  21. 21.
    J. H. Dymond, A. J. Easteal, and L. A. Woolf, Chem. Phys. 99:397 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • C. Erkey
    • 1
  • J. B. Rodden
    • 1
  • M. A. Matthews
    • 1
  • A. Akgerman
    • 1
  1. 1.Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations