International Journal of Thermophysics

, Volume 12, Issue 5, pp 769–781

The thermal conductivity of molten NaNO3 and KNO3

  • Y. Nagasaka
  • A. Nagashima
Article
  • 333 Downloads

Abstract

The thermal conductivity data for molten NaNO3 and KNO3 have been examined in order to propose recommended data sets for these two popular heat carriers and to establish the reference values above the temperature range covered by toluene and water. It is known that the measurement of the thermal conductivity of molten salts is very difficult, owing mainly to their corrosiveness and high melting temperatures, which introduce complications in apparatus design and significant systematic errors due to radiation and convection. However, some recent measurements seem to manifest more trustworthy values than obtained before. All available data have been collected and critically evaluated. The temperature range covered is 584 to 662 K for molten NaNO3 and 662 to 712 K for molten KNO3, with the confidence limits better than ± 5%.

Key words

molten salts potassium nitrate (KNO3sodium nitrate (NaNO3thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).Google Scholar
  2. 2.
    G. J. Janz, High Temp. Sci. 19:173 (1985).Google Scholar
  3. 3.
    E. McLaughlin, Chem. Rev. 64:389 (1964).Google Scholar
  4. 4.
    A. G. Turnbull, Aust. J. Appl. Sci. 12:30 (1961).Google Scholar
  5. 5.
    A. G. Turnbull, Aust. J. Appl. Sci. 12:324 (1961).Google Scholar
  6. 6.
    T. Omotani and A. Nagashima, J. Chem. Eng. Data 29:1 (1984).Google Scholar
  7. 7.
    H. Bloom, A. Doroszkowski, and S. B. Tricklebank, Aust. J. Chem. 18:1171 (1965).Google Scholar
  8. 8.
    L. R. White and H. T. Davis, J. Chem. Phys. 47:5433 (1967).Google Scholar
  9. 9.
    S. E. Gustafsson, N. O. Halling, and R. A. E. Kjellander, Z. Naturforsch 23a:44 (1968).Google Scholar
  10. 10.
    S. E. Gustafsson, N. O. Halling, and R. A. E. Kjellander, Z. Naturforsch 23a:682 (1968).Google Scholar
  11. 11.
    J. McDonald and H. T. Davis, J. Phys. Chem. 74:725 (1970).Google Scholar
  12. 12.
    T. Omotani, Y. Nagasaka, and A. Nagashima, Int. J. Thermophys. 3:17 (1982).Google Scholar
  13. 13.
    R. Santini, L. Tadrist, J. Pantaloni, and P. Cerisier, Int. J. Heat Mass Transfer 27:623 (1984).Google Scholar
  14. 14.
    R. Tufeu, J. P. Petitet, L. Denielou, and B. Le Neindre, Int. J. Thermophys. 6:315 (1985).Google Scholar
  15. 15.
    T. Karasawa, Y. Nagasaka, and A. Nagashima, Trans. JSME 52:940 (1986) (in Japanese).Google Scholar
  16. 16.
    S. Kitade, Y. Kobayashi, Y. Nagasaka, and A. Nagashima, High Temp. High Press. 21:219 (1989).Google Scholar
  17. 17.
    J. G. Janz, C. B. Allen, N. P. Bansal, R. M. Murphy, and R. P. T. Tomkins, Natl. Stand. Ref. Data Ser. 61:PartII (NBS) (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Y. Nagasaka
    • 1
  • A. Nagashima
    • 1
  1. 1.Department of Mechanical EngineeringKeio UniversityYokohamaJapan

Personalised recommendations