Advertisement

International Journal of Thermophysics

, Volume 3, Issue 4, pp 307–323 | Cite as

Mutual diffusion coefficients for binary mixtures of normal alkanes

  • A. A. Alizadeh
  • W. A. Wakeham
Article

Abstract

This paper describes the design and operation of a new instrument for the measurement of diffusion coefficients in liquid mixtures. The instrument employs the principle of Taylor dispersion and has been designed so that it operates as nearly as possible in accordance with the simplest possible mathematical description of the measurement process. The remaining departures from the simple description are accommodated by means of small corrections which have been evaluated from a detailed theory of a practical instrument so that accurate measurement of diffusion coefficients may be performed. The apparatus has been employed to make a series of measurements of the mutual diffusion coefficient of binary mixtures among the normal alkanes hexane, heptane, and octane. The measurements have been performed at atmospheric pressure in the temperature range 290–340 K and over the entire range of mixture composition. It is estimated that the experimental data have an associated uncertainty of ±1%. The temperature and composition dependences of the mutual diffusion coefficient have been found to be linear, and the entire body of experimental data is represented by a simple correlating equation within its estimated uncertainty.

Key words

diffusion coefficient hydrocarbons liquid mixtures Taylor dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Ellerton and P. J. Dunlop, J. Phys. Chem. 71:1291 (1967).Google Scholar
  2. 2.
    L. G. Longsworth, J. Am. Chem. Soc. 75:5705 (1953).Google Scholar
  3. 3.
    H. J. V. Tyrrell and P. J. Watkiss, Annu. Rep. Chem. Soc. A, 35 (1976).Google Scholar
  4. 4.
    G. I. Taylor, Proc. Roy. Soc. A219:186 (1953).Google Scholar
  5. 5.
    R. Aris, Proc. Roy. Soc. A235:67 (1956).Google Scholar
  6. 6.
    A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 1:243 (1980).Google Scholar
  7. 7.
    A. Alizadeh, PhD thesis, University of London (1982).Google Scholar
  8. 8.
    B. Andersson and T. Berglin, Proc. Roy. Soc. London A377:251 (1981).Google Scholar
  9. 9.
    R. J. Nunge, T. S. Lin, and W. N. Gill, J. Fluid Mech. 51:363 (1972).Google Scholar
  10. 10.
    A. L. Van Geet and A. W. Adamson, J. Phys. Chem. 68:238 (1964).Google Scholar
  11. 11.
    H. Y. Lo, J. Chem. Eng. Data 19:236 (1974).Google Scholar
  12. 12.
    D. L. Bidlack, T. K. Kett, C. M. Kelly, and D. K. Anderson, J. Chem. Eng. Data 14:342 (1969).Google Scholar
  13. 13.
    J. W. Moore and R. M. Wellek, J. Chem. Eng. Data 19:136 (1974).Google Scholar
  14. 14.
    K. J. Czworniak, H. C. Anderson, and R. Pecora, Chem. Phys. 11:451 (1975).Google Scholar
  15. 15.
    M. A. Lusis and G. A. Ratcliff, Can. J. Chem. Eng. 40:385 (1968).Google Scholar
  16. 16.
    V. Sanchez and M. Clifton, Ind. Eng. Chem. Fundam. 16:318 (1977).Google Scholar
  17. 17.
    A. L. Babb and C. S. Caldwell, J. Phys. Chem. 60:51 (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • A. A. Alizadeh
    • 1
  • W. A. Wakeham
    • 1
  1. 1.Department of Chemical Engineering and Chemical TechnologyImperial CollegeLondonEngland

Personalised recommendations