Skip to main content
Log in

Equation of state for compressed liquids and their mixtures from the cohesive energy density

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A procedure is presented, based on statistical-mechanical theory, for predicting the equation of state of compressed normal liquids and their mixtures from two scaling constants that are available from measurements at ordinary pressures and temperatures. The theoretical equation of state is that of Ihm, Song, and Mason, and the two constants are the enthalpy of vaporization and the liquid density at the triple point, which are related to the cohesive energy density of regular solution theory. The procedure is tested on a number of substances ranging in complexity from Ar and CO2 to n-heptane and toluene. The results indicate that the liquid density at any pressure and temperature can be predicted within about 5%, over the range from T tp to T c and up to the freezing line. Possible methods of determining the scaling constants are discussed, as well as other possible choices for scaling constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed. (Butterworth Scientific, London, 1982), Sect. 2.3.

    Google Scholar 

  2. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987), Sect. 3–11.

    Google Scholar 

  3. A. T. J. Hayward, Br. J. Appl. Phys. 18:965 (1967).

    Google Scholar 

  4. J. R. Macdonald, Rev. Mod. Phys. 41:316 (1969).

    Google Scholar 

  5. Y.-H. Huang and J. P. O'Connell, Fluid Phase Equil. 37:75 (1987).

    Google Scholar 

  6. J. H. Dymond and R. Malhotra, Int. J. Thermophys. 9:941 (1988).

    Google Scholar 

  7. Reference 2, p. 284.

    Google Scholar 

  8. Y. Song, B. Caswell, and E. A. Mason, Int. J. Thermophys. 12:855 (1991); Fluid Phase Equil. (in press).

    Google Scholar 

  9. Y. Song and E. A. Mason, J. Chem. Phys. 91:7840 (1989).

    Google Scholar 

  10. Y. Song and E. A. Mason, Fluid Phase Equil. 75:105 (1992).

    Google Scholar 

  11. Y. Song and E. A. Mason, Phys. Rev. A 42:4743, 4749 (1990).

    Google Scholar 

  12. Y. Song and E. A. Mason, Phys. Rev. A 41:3121 (1990).

    Google Scholar 

  13. G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94:3839 (1991); Fluid Phase Equil. 75:117 (1992).

    Google Scholar 

  14. F.-M. Tao and E. A. Mason, Int. J. Thermophys. 13:1053 (1992).

    Google Scholar 

  15. C. Tsonopoulos, AIChE J. 20:263 (1974).

    Google Scholar 

  16. D. R. Schreiber and K. S. Pitzer, Fluid Phase Equil. 46:113 (1989).

    Google Scholar 

  17. Reference 2, Appendix A.

    Google Scholar 

  18. J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, 3rd ed. (Reinhold, New York, 1950), pp. 123–124.

    Google Scholar 

  19. G. Scatchard, Equilibrium in Solutions (Harvard University Press, Cambridge, MA, 1976), pp. 206–207.

    Google Scholar 

  20. N. B. Vargaftik, Handbook of Physical Properties of Liquids and Gases, 2nd ed. (Hemisphere, New York, 1983), English translation.

    Google Scholar 

  21. J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures. A Critical Compilation (Oxford University, Oxford, 1980).

    Google Scholar 

  22. R. D. Goodwin, J. Phys. Chem. Ref. Data 17:1541 (1988).

    Google Scholar 

  23. B. A. Younglove, J. Phys. Chem. Ref. Data 11:Suppl. No. 1 1982.

  24. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  25. R. D. Goodwin, J. Phys. Chem. Ref. Data 18:1565 (1989).

    Google Scholar 

  26. G. Ihm, Y. Song, and E. A. Mason, Mol. Phys. 75:897 (1992).

    Google Scholar 

  27. P. W. Atkins, Physical Chemistry, 4th ed. (Freeman, New York, 1990), p. 90.

    Google Scholar 

  28. Reference 18, Chap. 23.

    Google Scholar 

  29. G. Scatchard, Chem. Rev. 8:321 (1931).

    Google Scholar 

  30. E. A. Mason, Am. J. Phys. 34:1193 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper dedicated to Professor Joseph Kestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boushehri, A., Mason, E.A. Equation of state for compressed liquids and their mixtures from the cohesive energy density. Int J Thermophys 14, 685–697 (1993). https://doi.org/10.1007/BF00502102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502102

Key words

Navigation