International Journal of Thermophysics

, Volume 5, Issue 1, pp 53–71 | Cite as

Measurements of thermophysical properties by a stepwise heating method

  • N. Araki
Article

Abstract

An outline of the stepwise heating method for measuring thermal diffusivity and specific heat capacity of samples in both solid and liquid phases is described. The method is based on the measurement of temperature response at the surface of a solid sample when the other surface is heated in step-function. By making the best use of the characteristic points of this method, applications to samples in the liquid state, especially to high temperature melts such as molten salts, have been tried. As examples of measurement results, the thermal diffusivity, specific heat capacity, and thermal conductivity of zirconia brick and the thermal diffusivity of molten salts are shown in graphic form.

Key words

molten flouride salt stepwise heating method specific heat capacity thermal diffusivity zirconia brick 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kobayasi and T. Kumada, J. Atomic Energy Soc. Japan 9:58 (1967), Translated into English as UK At. Energy Establ. Transi. 68/5071:1 (1968).Google Scholar
  2. 2.
    K. Kobayasi and T. Kumada, Tech. Rept. Tohoku Univ. 33:169 (1968).Google Scholar
  3. 3.
    T. Kumada and K. Kobayasi, J. Nucl. Sci. Tech. 12:154 (1975).Google Scholar
  4. 4.
    T. Kumada and K. Kobayasi, J. Atomic Energy Soc. Japan 11:462 (1969).Google Scholar
  5. 5.
    K. Kobayasi and T. Kobayashi, Trans. Japan Soc. Mech. Engrs. 46:1318 (1980).Google Scholar
  6. 6.
    K. Kobayasi and T. Takano, Trans. Japan Soc. Mech. Engrs. 48:2026 (1982).Google Scholar
  7. 7.
    Y. Kato, K. Kobayasi, N. Araki, and K. Furukawa, J. Phys. E 8:461 (1975).Google Scholar
  8. 8.
    Y. Kato, K. Kobayasi, N. Araki, and K. Furukawa, J. Phys. E 10:921 (1977).Google Scholar
  9. 9.
    K. Kobayasi and N. Araki, Proc. 5th Int. Heat Transfer Conf., Vol. V (Tokyo, 1974), pp. 247–251.Google Scholar
  10. 10.
    Y. Kato, K. Furukawa, N. Araki, and K. Kobayasi, Proc. 3rd Japan Symp. Thermophys. Prop. (Hamamatsu, 1982), pp. 57–60.Google Scholar
  11. 11.
    N. Araki and K. Natsui, Trans. Japan Soc. Mech. Engrs. 49(441 B):1048 (1983).Google Scholar
  12. 12.
    N. Araki, M. Ochi, and K. Kobayasi, Trans. Japan Soc. Mech. Engrs. 49:(441 B):1058 (1983).Google Scholar
  13. 13.
    R. D. Cowan, J. Appl. Phys. 32:1363 (1961).Google Scholar
  14. 14.
    W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32:1679 (1961).Google Scholar
  15. 15.
    T. Kumada and K. Kobayasi, J. Nucl. Sci. Tech. 13:315 (1976).Google Scholar
  16. 16.
    K. Kobayasi, Proc. 1st Japan Symp. Thermophys. Prop. (Tokyo, 1980), pp. 105–108.Google Scholar
  17. 17.
    Y. Kato, K. Furukawa, N. Araki, and K. Kobayasi, High Temp.-High Press. 15:191 (1983).Google Scholar
  18. 18.
    J. W. Cooke, ORNL-4728 (1971), p. 41.Google Scholar
  19. 19.
    N. Araki and K. Natsui, Preprint Japan Soc. Mech. Engrs. No. 803-2 (1980), pp. 56–58.Google Scholar
  20. 20.
    K. Kobayasi, N. Araki, and Y. Iida, Proc. 7th Int. Heat Transfer Conf., Vol. 6, (Munchen, 1982), pp. 467–472.Google Scholar
  21. 21.
    Y. Kato, N. Araki, K. Kobayasi, and A. Makino, 18th Int. Conf. Thermal Cond., Rapid City, (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • N. Araki
    • 1
  1. 1.Department of Mechanical EngineeringShizouka UniversityHamamatsuJapan

Personalised recommendations