Advertisement

International Journal of Thermophysics

, Volume 11, Issue 3, pp 467–476 | Cite as

Equation of state and critical point of cesium

  • N. B. Vargaftik
  • E. B. Gelman
  • V. F. Kozhevnikov
  • S. P. Naursakov
Article

Abstract

Equation-of-state measurements for cesium at temperatures from 350 to 2200 K and pressures from 1 to 60 MPa by means of a hermetically sealed two-zone dilatometer are presented. The experimental range includes the liquid and gaseous phases together with the coexistence curve up to critical point and supercritical region. The critical parameters are 1938 K, 9.4 MPa, 0.39 g · cm−3. The data were used for the calculation of tables of the density and its derivatives for cesium. The results are discussed.

Key words

cesium compressibility critical parameters density dilatometer equation of state high temperatures thermal expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).Google Scholar
  2. 2.
    R. W. Ohse, J.-F. Babelot, J. Magill, and M. Tetenbaum, in Handbook of Thermodynamic and Transport Properties of Alkali Metals, R. W. Ohse, ed. IUPAC, Chem. Data N 30 (Oxford, 1985), pp. 329–347.Google Scholar
  3. 3.
    N. B. Vargaftik, V. F. Kozhevnikov, P. N. Ermilov, and V. A. Alekseev, in Proc. 8th Symp. Thermophys. Prop., Vol. 2, J. V. Sengers, ed. (ASME, New York, 1982), pp. 174–175.Google Scholar
  4. 4.
    N. B. Vargaftik, V. F. Kozhevnikov, and P. N. Ermilov, High Temp.-High Press. 16:233 (1984).Google Scholar
  5. 5.
    V. F. Kozhevnikov and P. N. Ermilov, Prib. Tekh. Eksp. N1:83 (1982).Google Scholar
  6. 6.
    N. B. Vargaftik, E. B. Gelman, V. F. Kozhevnikov, and S. P. Naurzakov, in Proc. 11 AIRAPT Int. Conf., Vol. 1 (Naukova Dumka, Kiev, 1989), pp. 57–62.Google Scholar
  7. 7.
    N. A. Pokrasin, V. V. Roshchupkin, L. R. Fokin, N. B. Fokin and Khandomirova, Teplofiz. Svoistva Veshchestv Mater. 19:33 (1983) (in Russian).Google Scholar
  8. 8.
    N. B. Vargaftik, L. D. Voljak, and V. G. Stepanov, in Handbook of Thermodynamic and Transport Properties of Alkali Metals, R. W. Ohse, ed. IUPAC Chem. Data N 30 (Oxford, 1985), pp. 641–666.Google Scholar
  9. 9.
    S. Jungst, B. Knuth, and F. Hensel, Phys. Rev. Lett. 55:2160 (1985).Google Scholar
  10. 10.
    C. Lanczos, Applied Analysis (Prentice Hall, Englewood Cliffs, N.J., 1956).Google Scholar
  11. 11.
    E. A. Guggenheim, J. Chem. Phys. 12:253 (1945).Google Scholar
  12. 12.
    P. R. Roach, Phys. Rev. 170:213 (1968).Google Scholar
  13. 13.
    F. Hensel, in Proc. 8th Symp. Thermophys. Prop., Vol. 2, J. V. Sengers, ed. (ASME, New York, 1982), pp. 151–158.Google Scholar
  14. 14.
    I. K. Kikoin and A. P. Senchenkov, Fiz. Metal. Metalloved. 24:843 (1967) (in Russian).Google Scholar
  15. 15.
    I. K. Kikoin, A. P. Senchenkov, S. P. Naurzakov, and E. B. Gelman, Preprint IAE-2310 (Moscow, 1973) (in Russian).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • N. B. Vargaftik
    • 1
  • E. B. Gelman
    • 2
  • V. F. Kozhevnikov
    • 1
  • S. P. Naursakov
    • 2
  1. 1.Moscow Aviation InstituteMoscowUSSR
  2. 2.Kurchatov Institute of Atomic EnergyMoscowUSSR

Personalised recommendations