International Journal of Thermophysics

, Volume 10, Issue 1, pp 259–268 | Cite as

Determination of the thermal diffusivity and specific heat using an exponential heat pulse, including heat-loss effects

  • C. B. Vining
  • A. Zoltan
  • J. W. Vandersande


The one-dimensional heat diffusion equation has been solved analytically for the case of a heat pulse of the form F(t) = exp(−t/τ)/τ applied to the front face of a homogeneous body including the effects of heat loss from the front and back faces. Approximate expressions are presented which yield a simple, accurate technique for the determination of the thermal diffusivity and specific heat, suitable to a wide range of heat-pulse time constant and heat-loss parameters, without recourse to graphical techniques or requiring further computer analysis. A procedure is described for the determination of an effective time constant to allow application of the present results to the case of a nonexponential heat pulse. Experimental results supporting the theoretical analysis are presented for five samples of silicon germanium alloys of various thicknesses, determined using a xenon flash tube heat-pulse exhibiting an exponential dependence. Proper consideration of the experimental heat pulse shape is shown to lead to reliable corrections to the apparent thermal diffusivity, even for relatively long heat-pulse times.

Key words

heat capacity heat-loss correction heat-pulse method specific heat thermal diffusivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32:1679 (1961).Google Scholar
  2. 2.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford University Press. New York, 1959), pp. 126–127.Google Scholar
  3. 3.
    W. J. Parker and R. J. Jenkins, Adv. Energy Cornvrs. 2:87 (1962).Google Scholar
  4. 4.
    J. A. Cape and G. W. Lehman, J Appl. Phys. 34:1909 (1963).Google Scholar
  5. 5.
    R. D. Cowan, J. Appl. Phys. 34:926 (1963).Google Scholar
  6. 6.
    D. A. Watt, Br. J. Appl. Phys. 17:231 (1966).Google Scholar
  7. 7.
    R. C. Heckman, J. Appl. Phys. 44:1455 (1973).Google Scholar
  8. 8.
    L. M. Clark III and R. E. Taylor, J. Appl. Phys. 46:714 (1975).Google Scholar
  9. 9.
    R. E. Taylor and J. A. Cape, Appl. Phys. Lett. 5:212 (1964).Google Scholar
  10. 10.
    K. B. Larson and K. Koyama, J. Appl. Phys. 38:465 (1967).Google Scholar
  11. 11.
    W. J. Parker, Proceedings of 2nd Conference on Thermal Conductivity (National Research Council of Canada, Ottawa, 1962), p. 33.Google Scholar
  12. 12.
    C. Wood and A. Zoltan, Rev. Sci. Instrum. 55:235 (1984).Google Scholar
  13. 13.
    J. W. Vandersande, C. Wood, A. Zoltan, and D. Whittenberger, Proceedings of the I9th International Thermal Conductivity Conference (Cookeville, Tenn. 1985); Thermal Conductivity 19 (Plenum Press, New York, 1988), pp. 445–452.Google Scholar
  14. 14.
    J. W. Vandersande, A. Zoltan, and C. Wood, Int. J. Thermophys. 10:251 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • C. B. Vining
    • 1
  • A. Zoltan
    • 1
  • J. W. Vandersande
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations