Hydrophobic interactions responsible for unspecific binding of morphine-like drugs

  • V. Höllt
  • Hj. Teschemacher


The unspecific binding of four narcotic analgesics 3H-dihydromorphine, 14C-morphine, 3H-etorphine and 3H-fentanyl to human albumin, human plasma, rabbit plasma and several tissue homogenates from rabbits was investigated using equilibrium dialysis and ultrafiltration. At a drug concentration of 10−7 M in human plasma, dihydromorphine is bound to an extent of 14%, morphine to 23%, etorphine to 88% and fentanyl to 70%. These differences in binding are due to different degrees of hydrophobic interaction between the drugs investigated and the plasma or tissue components. The hydrophobic interactions are due to the unionized form of the drugs. The ionized form is bound to a negligible extent with all four compounds, possibly in part by ionic mechanism. Binding increased with increasing ionic strength of the protein solution, with raising temperature between 0°C and 37°C and with increasing pH values of the protein solution, features which are characteristic of hydrophobic interactions. Scatchard plots of the binding data, from which the total binding constants nk were derived, indicated high concentrations of binding sites compared with drug concentrations found analgesically effective in vivo.

Key words

Protein Binding Opiates Hydrophobic Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckett, A. H.: Stereochemical factors in biological activity. Fortschr. Arzneimittelforsch. 1, 455–530 (1959)Google Scholar
  2. Beckett, A. H., Greenhill, J. V.: Weakly basic analoguous of potent analgesics. J. med. pharm. Chem. 4, 423–436 (1961)Google Scholar
  3. Bentley, K. W., Lewis, J. W.: The relationship between structure and activity in the 6,14-endoethenotetrahydrothebaine series of analgesics. In: Agonist and antagonist action of narcotic analgesic drugs, pp. 7–16. London: The Macmillan Press Ltd. 1972Google Scholar
  4. Biers, H., Stevenson, G. W.: The active form of the narcotic analgesic molecule. Fed. Proc. 19, 272 (1960)Google Scholar
  5. Bird, A. E., Marshall, A. C.: Correlation of serum binding of penicillins with partition coefficients. Biochem. Pharmacol. 16, 2275–2290 (1967)Google Scholar
  6. Blaney, D. J., Woods, L. A.: Plasma protein binding of morphine. J. Pharmacol. exp. Ther. 116, 7 (1956)Google Scholar
  7. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960)Google Scholar
  8. Brodie, B. B., Hogben, C. A. M.: Some physico-chemical factors in drug action. J. Pharm. Pharmacol. 9, 345–380 (1957)Google Scholar
  9. Conn, H. L., Jr., Luchi, R. J.: Ionic influences on quinidine-albumin interaction. J. Pharmacol. exp. Ther. 133, 76–86 (1961)Google Scholar
  10. Curry, S. H.: Theoretical changes in drug distribution resulting from changes in binding to plasma proteins and to tissues. J. Pharm. Pharmacol. 22, 753–757 (1970)Google Scholar
  11. Firemark, H., Barlow, C. F., Roth, L. J.: The entry, accumulation and binding of diphenylhydantoin-2-C14 in brain. Int. J. Neuropharmacol. 2, 25–38 (1963)Google Scholar
  12. Ganshorn, A., Kurz, H.: Unterschiede zwischen der Proteinbindung Neugeborener und Erwachsener und ihre Bedeutung für die pharmakologische Wirkung. Naunyn-Schmiedeberg's Arch. Pharmak. exp. Path. 260, 117 (1968)Google Scholar
  13. Gilette, J.: Reversible binding as a complication in relating the in vitro effect of drugs to their in vivo activity. Proc. Sec. Int. Pharmacol. Meeting 4, 9–22 (1965)Google Scholar
  14. Goldbaum, L. R., Smith, P. K.: The interaction of barbiturates with serum albumin and its possible relation to their disposition and pharmacological actions. J. Pharmacol. exp. Ther. 11, 197–209 (1954)Google Scholar
  15. Goldstein, A., Lowney, L. I., Pal, B. K.: Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc. nat. Acad. Sci. (Wash.) 68, 1742–1747 (1971)Google Scholar
  16. Hansch, C., Steward, A. R., Iwasa, J., Deutsch, E. W.: The use of a hydrophobic binding constant for structure activity correlations. Molec. Pharmacol. 1, 205–213 (1965)Google Scholar
  17. Harmsen, B. J. M., de Bruin, S. H., Janssen, L. H. M., Rodrigues de Miranda, J. F., van Os, G. A. J.: pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH. Biochemistry 10, 3217–3221 (1971)Google Scholar
  18. Herz, A., Teschemacher, Hj.: Activities and sites of antinociceptive action of morphine-like analgesics. Advanc. Drug. Res. 6, 79–119 (1971)Google Scholar
  19. Hess, R., Herz, A., Friedel, K.: Pharmacokinetics of fentanyl in view of the importance for limiting the effect. J. Pharmacol. exp. Ther. 170, 474–484 (1971)Google Scholar
  20. Hess, R., Leschem, D., Teschemacher, Hj., Herz, A.: A simple method for the separate estimation of labelled drugs and their metabolites by liquid scintillation counting. Europ. J. clin. Pharmacol. 5, 104–110 (1972)Google Scholar
  21. Hug, C. C., Jr., Oka, T.: Uptake of dihydromorphine-3H by synaptosomes. Life Sci. 10, 201–213 (1971)Google Scholar
  22. Kauzmann, W.: Some factors in the interpretation of the protein denaturation. Advanc. Protein Chem. 14, 1–63 (1959)Google Scholar
  23. Klotz, I. M., Hunston, D. L.: Properties of graphical representation of multiple classes of binding sites. Biochemistry 10, 3065–3069 (1971)Google Scholar
  24. Klotz, I. M., Urquart, J. M.: The binding of organic ions by proteins. Buffer effects. J. Phys. Colloid Chem. 53, 100–114 (1949)Google Scholar
  25. Kuschinsky, K.: The specifity of the binding of some cardenolides to human serum albumin. Arzneimittel-Forsch. 20, 842–845 (1970)Google Scholar
  26. Kutter, E., Herz, A., Teschemacher, Hj., Hess, R.: Structure-activity correlations of morphine-like analgesics based on efficiencies following intravenous and intraventricular applications. J. med. Chem. 13, 801–805 (1970)Google Scholar
  27. Mertin, J., Wisser, H., Doerr, P.: Untersuchung über den Normalbereich des Gesamteiweißes und der Eiweißfraktionen des Liquors cerebrospinalis nach elektrophoretischer Trennung auf Celluloseacetatfolie. Z. klin. Chem. klin. Biochem. 9, 337–340 (1971)Google Scholar
  28. Nemethy, G.: Hydrophobe Wechselwirkungen. Angew. Chem. 79, 260–271 (1967)Google Scholar
  29. Olsen, G. D.: Methadone binding to human plasma albumin. Science 176, 525–526 (1972)Google Scholar
  30. Pert, C. B., Snyder, S. H.: Properties of opiate binding in rat brain. Proc. nat. Acad. Sci. (Wash.) 70, 2243–2247 (1973)Google Scholar
  31. van Praag, D., Simon, E. J.: Studies on the intracellular distribution and tissue binding of dihydromorphine-7,8-3H in the rat. Proc. Soc. exp. Biol. (N. Y.) 122, 6–11 (1966)Google Scholar
  32. Rosenthal, H.: A graphic method for the determination and presentation of binding parameters in a complex system. Analyt. Biochem. 20, 525–532 (1967)Google Scholar
  33. Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949)Google Scholar
  34. Schanker, L. S., Morrison, A. S.: Physiological dispositions of guanethidine in the rat and its uptake by heart slices. Int. J. Neuropharmacol. 4, 27–39 (1965)Google Scholar
  35. Scholtan, W.: Die Bindung der Langzeit-Sulfonamide an die Eiweißkörper des Serums. Arzneimittel-Forsch. 11, 707–720 (1961)Google Scholar
  36. Scholtan, W.: Über die bindung der Langzeit-Sulfonamide an die Eiweißkörper. Makromol. Chem. 54, 24–59 (1962)Google Scholar
  37. Scholtan, W.: Die Bindung der Sulfonamide an Eiweißkörper. Arzneimittel-Forsch. 14, 469–473, 1139–1146 (1964)Google Scholar
  38. Scholtan, W.: Die hydrophobe Bindung der Pharmaka an Humanalbumin und Ribonucleinsäure. Arzneimittel-Forsch. 18, 505–517 (1968)Google Scholar
  39. Simon, E. J., Hiller, J. M., Edelman, I.: Stereospecific binding of the potent narcotic analgesic 3H-etorphine to rat-brain homogenate. Proc. nat. Acad. Sci. (Wash.) 70, 1947–1949 (1973)Google Scholar
  40. Terenius, L.: Stereospecific interaction between narcotic analgesics and the synaptic plasma membrane fraction of rat cerebral cortex. Acta pharmacol. (Kbh.) 32, 317–320 (1973)Google Scholar
  41. Weder, H. J., Bickel, M. H.: Interactions of drugs with proteins. II. J. pharm. Sci. 59, 1563–1569 (1970)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • V. Höllt
    • 1
  • Hj. Teschemacher
    • 1
  1. 1.Department für NeuropharmakologieMax-Planck-Institut für PsychiatrieMünchen 40Germany

Personalised recommendations