Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 310, Issue 2, pp 121–127 | Cite as

Different inhibitory effect of adrenaline on platelet adenylate cyclase in the presence of GTP plus cholera toxin and of stable GTP analogues

  • Karl H. Jakobs
  • Günter Schultz
Article

Summary

GTP is generally required for hormonal stimulation of adenylate cyclase. On the other hand, the presence of GTP is essential for hormone-induced inhibition of adenylate cyclase in cell-free preparations of human platelets and other cells. In order to differentiate the dual roles of GTP in hormonal stimulation and inhibition of adenylate cyclase, we have studied the effect of adrenaline on the platelet enzyme under conditions where guanine mucleotides caused marked stimulation. In the presence of GTP (≧1 μM), which by itself had no or only a small stimulatory effect on adenylate cyclase, adrenaline inhibited the basal and prostaglandin E1-stimulated forms of the enzyme. In contrast, the stable GTP analogues, GMP-P(NH)P and GTP-γ-S, which caused a time-dependent, persistent activation of the enzyme, reversed or prevented the inhibitory effect of adrenaline. Cholera toxin, which activates adenylate cyclase presumably by inhibition of a specific GTPase, increased cyclase activity in platelet membranes up to 4-fold, and GTP addition (0.1–30 μM) augmented this activation about 2-fold. The α-adrenergic component of adrenaline (0.1–100 μM), in a concentration-dependent manner, prevented the GTP-induced increase in cholera toxin-stimulated activity. The inhibition was also observed in enzyme preparations that had been fully activated by pretreatment with cholera toxin. These data suggest that α-adrenergic agonists may inhibit platelet adenylate cyclase through increased inactivation of the enzyme, possibly involving a stimulation of the GTPase connected to the adenylate cyclase system.

Key words

α-Adrenergic effects GTP effects on adenylate cyclase Adenylate cyclase inhibition GTPase 

Abbreviations

GMP-P(NH)P

guanylyl 5′-imidodiphosphate

GTP-γ-S

guanosine 5′-(γ-thio)triphosphate

GTPase

guanosine 5′-triphosphatase

Pi

inorganic phosphate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aktories, K., Jakobs, K. H.: GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic receptor stimulation. Hoppe-Seyler's Z. Physiol. Chem. 360, 223 (1979)Google Scholar
  2. Aktories, K., Jakobs, K. H., Schultz, G.: Influence of sodium chloride on the inhibition of hamster fat cell adenylate cyclase by GTP and on the inhibitory effects of α-adrenergic agonists. Naunyn-Schmiedeberg's Arch. Pharmacol. 308, R 15 (1979)Google Scholar
  3. Birnbaumer, L.: The actions of hormones and nucleotides on membrane-bound adenylyl cyclases. An overview. In: Receptors and hormone action, Vol. 1 (B. W. O'Malley, L. Birnbaumer, eds.), pp. 485–547. New York, London: Academic Press 1977Google Scholar
  4. Cassel, D., Selinger, Z.: Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538–551 (1976)Google Scholar
  5. Cassel, D., Selinger, Z.: Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 74, 3307–3311 (1977)Google Scholar
  6. Cassel, D., Selinger, Z.: Mechanism of adenylate cyclase activation through the β-adrenergic receptor. Catecholamine-induced displacement of bound GDP by GTP. Proc. Natl. Acad. Sci. USA 75, 4155–4159 (1978)Google Scholar
  7. Cooper, D. M. F., Schlegel, W., Lin, M. C., Rodbell, M.: Biphasic response of rat fat cell membrane adenylate cyclase to GTP. Fed. Proc. 38, 802 (1979)Google Scholar
  8. Finkelstein, R. A.: Cholera. Crit. Rev. Microbiol. 2, 553–623 (1973)Google Scholar
  9. Gill, D. M.: Mechanism of action of cholera toxin. In: Advances in cyclic nucleotide research, Vol. 8 (P. Greengard, G. A. Robison, eds.), pp. 85–118. New York: Raven Press 1977Google Scholar
  10. Glossmann, H., Presek, P.: Alpha-noradrenergic receptors in brain membranes: Sodium, magnesium and guanyl nucleotides modulate agonist binding. Naunyn-Schmiedeberg's Arch. Pharmacol. 306, 67–73 (1979)Google Scholar
  11. Harwood, J. P., Löw, H., Rodbell, M.: Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J. Biol. Chem. 248, 6239–6245 (1973)Google Scholar
  12. Helmreich, E. J. M., Zenner, H. P., Pfeuffer, T., Cori, C. F.: Signal transfer from hormone receptor to adenylate cyclase. In: Current topics in cellular regulation, Vol. 10 (B. L. Horecker, E. R. Stadtman, eds.), pp. 41–87. New York, London: Academic Press 1976Google Scholar
  13. Jakobs, K. H., Schultz, G.: Adrenaline-induced inhibition of cholera toxin-stimulated platelet adenylate cyclase. Hoppe-Seyler's Z. Physiol. Chem. 359, 280 (1978)Google Scholar
  14. Jakobs, K. H., Saur, W., Schultz, G.: Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J. Cycl. Nucl. Res. 2, 381–392 (1976)Google Scholar
  15. Jakobs, K. H., Saur, W., Schultz, G.: Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett. 85, 167–170 (1978a)Google Scholar
  16. Jakobs, K. H., Saur, W., Schultz, G.: Characterization of α- and β-adrenergic receptors linked to human platelet adenylate cyclase. Naunyn-Schmiedeberg's Arch. Pharmacol. 302, 285–291 (1978b)Google Scholar
  17. Levitzki, A., Helmreich, E. J. M.: Hormone receptor-adenylate cyclase interactions. FEBS Lett. 101, 213–219 (1979)Google Scholar
  18. Londos, C., Cooper, D. M. F., Schlegel, W., Rodbell, M.: Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc. Natl. Acad. Sci. USA 75, 5362–5366 (1978)Google Scholar
  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  20. Pfeuffer, T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J. Biol. Chem. 252, 7224–7234 (1977)Google Scholar
  21. Pfeuffer, T., Helmreich, E. J. M.: Activation of pigeon erythrocyte membrane adenylate cyclase by guanyl nucleotide analogues and separation of a nucleotide binding protein. J. Biol. Chem. 250, 867–876 (1975)Google Scholar
  22. Rodbell, M.: The role of nucleotide regulatory components in the coupling of hormone receptors and adenylate cyclase. In: Molecular biology and pharmacology of cyclic nucleotides (G. Folco, R. Paoletti, eds.), pp. 1–12. Amsterdam: Elsevier/North-Holland 1978Google Scholar
  23. Sabol, S. L., Nirenberg, M.: Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by α-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by α-receptors. J. Biol. Chem. 254, 1913–1920 (1979)Google Scholar
  24. Symons, R. H.: Synthesis of [α-32P]ribo- and deoxyribonucleoside 5′-triphosphates. In: Methods in enzymology, Vol. 29 (L. Grossman, K. Moldave, eds.), pp. 102–115. New York, London: Academic Press 1974Google Scholar
  25. Tsai, B. S., Lefkowitz, R. J.: Agonist-specific effects of guanine nucleotides on alpha-adrenergic receptors in human platelets. Mol. Pharmacol. 16, 61–68 (1979)Google Scholar
  26. U'Prichard, D. C., Snyder, S. H.: Guanyl nucleotide influences on 3H-ligand binding to α-noradrenergic receptors in calf brain membranes. J. Biol. Chem. 253, 3444–3452 (1978)Google Scholar
  27. Vaughan, M., Moss, J.: Mechanism of action of choleragen. J. Supramol. Struct. 8, 473–488 (1978)Google Scholar
  28. Walseth, T. F., Johnson R. A.: The enzymatic preparation of [α-32P]nucleoside triphosphates, cyclic [32P]AMP, and cyclic [32P]GMP. Biochim. Biophys. Acta 562, 11–31 (1979)Google Scholar
  29. Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., Besch, H. R.: Muscarinic cholinergic receptor modulation of β-adrenergic receptor affinity for catecholamines. J. Biol. Chem. 253, 4833–4836 (1978)Google Scholar
  30. Williams, L. T., Lefkowitz, R. J.: Receptor binding studies in adrenergic pharmacology. New York: Raven Press 1978Google Scholar
  31. Yamamura, H., Lad, P. M., Rodbell, M.: GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J. Biol. Chem. 252, 7964–7966 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Karl H. Jakobs
    • 1
  • Günter Schultz
    • 1
  1. 1.Pharmakologisches Institut der Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations