International Journal of Thermophysics

, Volume 4, Issue 2, pp 97–114

Pressure tensor and viscosity coefficients of a soft sphere liquid under shear

  • S. Hess
  • H. J. M. Hanley
Article

Abstract

General properties and consequences of the distortion of the structure of a simple liquid subjected to a planar shear flow are reported. In particular, the orientational distribution of particles in the first coordination shell around a given particle is analyzed, and the effect of this distribution on the pressure tensor is discussed. The distorted distribution gives rise to a set of non-Newtonian viscosity coefficients reflecting the occurrence of normal pressure differences in the liquid. Numerical values of these viscosities are given for a soft sphere fluid at 7/8 of the freezing density using the technique of nonequilibrium molecular dynamics. A wide range of shear rates is considered and all viscosity coefficients are found to be functions of the shear rate.

Key words

nonequilibrium molecular dynamics non-Newtonian effects radial distribution function Theological behavior viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Kirkwood, J. Chem. Phys. 14:180 (1946);J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18:817 (1950).Google Scholar
  2. 2.
    R. Eisenschitz, Statistical Theory of Irreversible Pressures (Oxford Univ. Press, Oxford, 1958).Google Scholar
  3. 3.
    H. S. Green, Handb. d. physik 10:1 (1960).Google Scholar
  4. 4.
    W. G. Hoover and W. T. Ashurst, Theor. Chem. Adv. Perspect. 1:1 (1975).Google Scholar
  5. 5.
    T. Naitoh and S. Ono, J. Chem. Phys. 70:4515 (1979).Google Scholar
  6. 6.
    D. J. Evans, Phys. Rev. A22:229 (1979).Google Scholar
  7. 7.
    D. J. Evans and H. J. M. Hanley, Physica 103A:343 (1980).Google Scholar
  8. 8.
    D. M. Heyes, J. J. Kim, C. J. Montrose, and T. A. Litowitz, J. Chem. Phys. 73:3987 (1980).Google Scholar
  9. 9.
    W. W. Wood and J. Erpenbeck, J. Stat. Phys. 24:455 (1981).Google Scholar
  10. 10.
    S. Hess, Phys. Rev. A22:2844 (1980); Phys. Rev. A25:614 (1982).Google Scholar
  11. 11.
    S. Hess and H. J. M. Hanley, Phys. Rev. A25:1801 (1982).Google Scholar
  12. 12.
    D. J. Evans, Phys. Rev. A23:1988 (1981).Google Scholar
  13. 13.
    We use the notation of Hess; ref. 10.Google Scholar
  14. 14.
    S. Hess, Physica 74:277 (1974); 86A:383 (1977).Google Scholar
  15. 15.
    S. Hess, Z. Naturforsch. 31a:1034 (1976).Google Scholar
  16. 16.
    I. Pardowitz and S. Hess, Physica 100A:540 (1980).Google Scholar
  17. 17.
    D. J. Evans, Physica 118A:51 (1983).Google Scholar
  18. 18.
    B. E. Holian and D. J. Evans, J. Chem. Phys. 78:5147 (1983).Google Scholar
  19. 19.
    H. J. M. Hanley and D. J. Evans, J. Chem. Phys. 76:3225 (1982).Google Scholar
  20. 20.
    D. J. Evans and H. J. M. Hanley, Phys. Lett. 80A:175 (1980).Google Scholar
  21. 21.
    D. J. Evans and H. J. M. Hanley, Phys. Lett. 79A:178 (1980).Google Scholar
  22. 22.
    H. J. M. Hanley, D. J. Evans, and S. Hess, J. Chem. Phys. (in press).Google Scholar
  23. 23.
    R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, (Wiley, New York, 1977).Google Scholar
  24. 24.
    S. Hess and L. Waldmann, Z. Naturforsch. 26A:1057 (1971); S. Hess, Physica 87A:273 (1977).Google Scholar
  25. 25.
    N. Herdegen and S. Hess, Physica 115A:281 (1982).Google Scholar
  26. 26.
    H. J. M. Hanley and D. J. Evans, Physica 103A:343 (1980).Google Scholar
  27. 27.
    N. A. Clark and B. J. Ackerson, Phys. Rev. Lett 44:1005 (1981).Google Scholar
  28. 28.
    S. Hess, Phys. Rev. A22:2844 (1980).Google Scholar
  29. 29.
    R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory, (Wiley, New York, 1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • S. Hess
    • 1
  • H. J. M. Hanley
    • 1
  1. 1.Chemical Engineering Science DivisionNational Bureau of StandardsBoulderUSA
  2. 2.Institut für Theoretische PhysikUniversity of Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations