Formation of gluconic acid at low pH-values by free and immobilized Aspergillus niger cells during citric acid fermentation

  • M. Heinrich
  • H. J. Rehm
Industrial Microbiology

Summary

A recently developed immobilization method, characterized by the adsorption of the mycelia onto a glass-carrier in a fixed-bed reactor, was applied for citric acid production by Aspergillus niger ATCC 9142, and compared with conventional culture techniques.

In a fixed-bed reactor and in a stirred fermenter a rapid gluconic acid production started immediately after nitrate exhaustion, though the pH was below 2.5 During a second production phase a comparatively small amount of citric acid was formed.

In surface and shaken-flask cultures nearly no gluconic acid could be found, whereas citric acid yields were significantly higher than in the fixed-bed reactor and in the stirred fermenter.

Manganese (0.8×10−7 Mol×dm−3 after 6 days incubation) from the stainless steel parts of the vessel seemed to be responsible for both gluconic acid production and small citric acid yields in the stirred fermenter and in the fixed-bed reactor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Obaidi ZS, Berry DR (1979) Extended production of citric acid using an exchange filtration technique. Biotechnol Lett 1:221–224Google Scholar
  2. Anderson JG, Blain JA, Divers SM, Todd JR (1980) Use of the disc fermenter to examine production of citric acid by Aspergillus niger. Biotechnol Lett 2:99–104Google Scholar
  3. Berry DR, Chmiel A, Al-Obaidi ZS (1977) Citric acid production by Aspergillus niger. In: Smith JE, Pateman JA (eds) Genetics and Physiology of Aspergillus. Academic Press, London New York, pp 405–426Google Scholar
  4. Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8:465–471Google Scholar
  5. Franke W (1963) Zur Physiologie und Enzymatik der Gluconsäure-Gärung durch Aspergillus niger. Zbl Bakt I Originale 191:194–200Google Scholar
  6. Habison A, Kubicek CP, Röhr M (1979) Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger. FEMS Microbiol Lett 5:39–42Google Scholar
  7. Heinrich M (1981) Vergleich einer Immobilisierungsmethode mit konventionellen Züchtungsverfahren zur Verwertung von n-Alkanen durch Fusarium moniliforme sowie zur Bildung von Citronensäure aus Saccharose durch Aspergillus niger. Thesis Universität MünsterGoogle Scholar
  8. Heinrich M, Rehm HJ (1981) Growth of Fusariummoniliforme on n-alkanes: Comparison of an immobilization method with conventional processes. Eur J Appl Microbiol Biotechnol 11:139–145Google Scholar
  9. Kristiansen B, Sinclair CG (1979) Production of citric acid in continuous culture. Biotechnol Bioeng 21:297–315Google Scholar
  10. Kubicek CP, Hampel W, Röhr M (1979) Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch Microbiol 123:73–79Google Scholar
  11. Lockwood LB (1975) Organic acid production. In: Smith JE, Berry DR (eds) The Filamentous Fungi, Vol. I Industrial Mycology. Edward Arnold, London, pp. 140–157Google Scholar
  12. Miall LM (1978) Organic acids. In: Rose AH (ed) Economic Microbiology, Vol. II. Academic Press, London New York, pp 47–119Google Scholar
  13. Rehm HJ (1980) Industrielle Mikrobiologie, 2. Aufl. Springer Verlag, Berlin heidelberg New YorkGoogle Scholar
  14. Röhr M, Kubicek CP (1981) Regulatory aspects of citric acid fermentation by Aspergillus niger. Process Biochem 16:34–37Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Heinrich
    • 1
  • H. J. Rehm
    • 1
  1. 1.Institut für MikrobiologieUniversität MünsterMünsterFederal Republic of Germany

Personalised recommendations