Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 309, Issue 1, pp 59–64 | Cite as

Effects of dipyridamole in vivo on ATP and cAMP content in platelets and arterial walls and on atherosclerotic plaque formation

  • A. Dembinska-Kiec
  • W. Rücker
  • P. S. Schönhöfer
Article

Summary

In rabbits receiving an atherogenic diet for 2 months, the ATP content of platelet rich plasma (PRP) and arterial tissue was significantly elevated as compared to normal rabbits. This increase in ATP levels of platelets from atherosclerotic rabbits was paralleled by higher basal as well as PGI2-induced cAMP levels. In arterial tissues, an increase was only obtained in PGI2-stimulated cAMP content.

Treatment with dipyridamole (DPD) for 4 weeks resulted in a reduction of the ATP content in platelets and arterial tissue from atherosclerotic rabbits to values seen in normal animals. Again, the reduction of ATP content was reflected in a decrease of basal as well as PGI2-induced cAMP levels in platelets, whereas in arterial tissue a decrease was only obtained in PGI2-induced cAMP content. At the same time, DPD treatment enhanced atherosclerotic plaque formation in the aortic wall.

The enhanced atherosclerotic plaque formation seen in DPD treated atherosclerotic rabbits may be linked to the inhibition of adenosine uptake, resulting in a decrease of the adenine nucleotide pools of arterial wall cells. The decrease also caused a reduction in PGI2-induced cAMP content. This effect may be linked to altered proliferative activity, since in many cell types, stimulation of cAMP levels results in reduced proliferation rates.

Key words

Atherosclerotic plaque formation Dipyridamole in vivo ATP content cAMP content PGI2 Platelets Aortic tissue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bono, D. P., Gordon, J. L., MacIntyre, D. E., Pearson, J. D.: Active transport of adenine and adenosine by blood platelets and cultured endothelial cells. Br. J. Pharmacol. 58, 466P (1976)Google Scholar
  2. Born, G. V., Mills, D. C. B.: Potentiation of the inhibitory effect of adenosine on platelet aggregation by drugs that prevent its uptake. J. Physiol. (Lond.) 202, 41P (1969)Google Scholar
  3. Breddin, K., Krzywanek, H. J., Bald, M., Kutschera, J.: Is enhanced platelet aggregation a risk factor for thrombo-embolic complications in atherosclerosis? In: Platelet aggregation and drugs (L. Caprino, E. C. Rossi, eds.), pp. 197–203. New York: Academic Press 1974Google Scholar
  4. D'Angelo, V., Mysliwiec, M., Donati, M. B., Gaetano, G.: Defective fibrinolytic and prostacyclin-like activity in human atheromatous plaques. Thrombos. Haemostas. 39, 535–536 (1978)Google Scholar
  5. Dembinska-Kiec, A., Gryglewska, T., Zmuda, A., Gryglewski, R. J.: The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbits. Prostaglandins 14, 1025–1035 (1977)Google Scholar
  6. Dembinska-Kiec, A., Rücker, W., Schönhöfer, P. S.: PGI2 enhanced cAMP content in bovine coronary arteries in the presence of isobutylmethylxanthine. Naunyn-Schmiedeberg's Arch. Pharmacol. 308, 107–110 (1979a)Google Scholar
  7. Dembinska-Kiec, A., Rücker, W., Schönhöfer, P. S.: Effects of dipyridamole in experimental atherosclerosis: Action of PGI2, platelet aggregation and atherosclerotic plaque formation. Atherosclerosis 33, 315–327 (1979b)Google Scholar
  8. Dieterle, Y., Ody, C., Ehrensberger, A., Stadler, H., Junod, A. F.: Metabolism and uptake of adenosine triphosphate and adenosine by porcine aortic and pulmonary endothelial cells and fibroblasts in culture. Circ. Res. 42, 869–876 (1978)Google Scholar
  9. Gilman, A. G.: Protein binding assay for adenosine 3′:5′-cyclic monophosphate. Proc. Natl. Acad. Sci. USA 67, 305–312 (1970)Google Scholar
  10. Gryglewski, J. R., Dembinska-Kiec, A., Chytkowski, A., Gryglewska, T.: Prostacyclin and thromboxane A2 biosynthesis capacities of heart, arteries and platelets at various stages of experimental atherosclerosis in rabbits. Atherosclerosis 31, 385–394 (1978)Google Scholar
  11. Hamberg, M., Svensson, J., Samuelsson, B.: Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72, 2994–2998 (1975)Google Scholar
  12. Harker, L. A., Ross, R., Glomset, J.: Role of the platelet in atherogenesis. Ann. N.Y. Acad. Sci. 275, 321–329 (1976)Google Scholar
  13. Hidaka, H., Asano, T., Shimamoto, T.: Cyclic 3′:5′-AMP phosphodiesterase of rabbit aorta. Biochim. Biophys. Acta 377, 103–116 (1975)Google Scholar
  14. Holmsen, H., Setkowsky, C. A., Day, H. J.: Effects of antimycin and 2-deoxyglucose on adenine nucleotides in human platelets. Role of metabolic adenosine triphosphate in primary aggregation, secondary aggregation and shape change of platelets. Biochem. J. 144, 385–396 (1974)Google Scholar
  15. Ilien, B., Stierle, A., Lugnier, C., Stoclet, J. C., Landry, Y.: Separation of three cyclic nucleotide phosphodiesterases from bovine aorta. Biochem. Biophys. Res. Commun. 83, 486–492 (1978)Google Scholar
  16. Kalbhen, D. A., Koch, H. J.: Methodische Untersuchungen zur quantitativen Mikrobestimmung von ATP in biologischem Material mit dem Firefly-Enzymsystem. Z. Klin. Chem. 5, 299–304 (1967)Google Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol-reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  18. Moncada, S., Herman, A. G., Higgs, E. A., Vane, J. R.: Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb. Res. 11, 323–344 (1977)Google Scholar
  19. Moncada, S., Korbut, R.: Dipyridamole and other phosphodiesterase inhibitors act as antithrombotic agents by potentiating endogenous prostacyclin. Lancet II, 1286–1289 (1978)Google Scholar
  20. Numano, F.: Progression and regression of atherosclerosis. Asian Med. J. 20, 625–644 (1977)Google Scholar
  21. Numano, F., Maezawa, H., Shimamoto, T., Adachi, K.: Changes of cyclic AMP and cyclic AMP phosphodiesterase in the progression and regression of experimental atherosclerosis. Ann. N.Y. Acad. Sci. 275, 311–320 (1976)Google Scholar
  22. Pastan, I., Johnson, G. S., Anderson, W. B.: Role of cyclic nucleotides in growth control. Annu. Rev. Biochem. 44, 491–522 (1975)Google Scholar
  23. Pearson, J. D., Carleton, J. S., Hutchings, A., Gordon, J. L.: Uptake and metabolism of adenosine by pig aortic endothelial and smooth muscle cells in culture. Biochem. J. 170, 265–271 (1978)Google Scholar
  24. Sixma, J. J., Lips, J. P. M., Trieschnigg, A. M. C., Holmsen, H.: Transport and metabolism of adenosine in human blood platelets. Biochim. Biophys. Acta 443, 33–48 (1976)Google Scholar
  25. Summers, A., Subbarao, K., Rucinski, B., Niewiarowski, S.: The effect of dipyridamole on adenosine uptake by platelets ex vivo. Thromb. Res. 11, 611–618 (1977)Google Scholar
  26. Tateson, J. E., Moncada, S., Vane, J. R.: Effects of prostacyclin (PGX) on cyclic AMP concentrations in human platelets. Prostaglandins 13, 389–397 (1977)Google Scholar
  27. Tornling, G., Unge, G., Ljungqvist, A., Carlsson, S.: Dipyridamole and capillary proliferation. A preliminary report. Acta Pathol. Microbiol. Scand. [A] 86, 82 (1978)Google Scholar
  28. Zmuda, A., Dembinska-Kiec, A., Chytkowski, A., Gryglewski, R. J.: Experimental atherosclerosis in rabbits: Platelet aggregability, thromboxane A2 generation and anti-aggregatory potency of prostacyclin. Prostaglandins 14, 1035–1042 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. Dembinska-Kiec
    • 1
  • W. Rücker
    • 1
  • P. S. Schönhöfer
    • 1
  1. 1.Zentrum für Pharmakologie und Toxikologie, Abteilung IIMedizinische Hochschule HannoverHannover 61Federal Republic of Germany

Personalised recommendations