Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 314, Issue 1, pp 97–100 | Cite as

1-Methyl-β-carboline (Harmane), a potent endogenous inhibitor of benzodiazepine receptor binding

  • Hans Rommelspacher
  • Christel Nanz
  • Harald O. Borbe
  • Klaus J. Fehske
  • Walter E. Müller
  • Uwe Wollert
Short Communication

Summary

The interaction of several β-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several hundred fold higher affinity for the benodiazepine receptor than inosine and hypoxanthine. Thus, we suggest that harmane or other related β-carbolines could be potential candidates as endogenous ligands of the benzodiazepine receptor.

Key words

Benzodiazepine receptor β-Carbolines Harmane Endogenous ligand 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniadis A, Müller WE, Wollert U (1980a) Central nervous system stimulating and depressing drugs as possible ligands of the benzodiazepine receptor. Neuropharmacology 19: 121–124Google Scholar
  2. Antoniadis A, Müller WE, Wollert U (1980b) Inhibition of GABA and benzodiazepine receptor binding by penicillins. Neurosci Lett 18: 309–312Google Scholar
  3. Asano T, Spector S (1979) Identification of inosine and hypoxanthine as endogenous ligands for the brain benzodiazepine-binding sites. Proc Natl Acad Sci USA 76: 977–981Google Scholar
  4. Borbe HO, Müller WE, Wollert U (1980) The identification of benzodiazepine receptors with brain-like specifity in bovine retina. Brain Res 182:466–469Google Scholar
  5. Buckholtz NS, Boggan WO (1977a) Monoamine oxidase inhibition in brain and liver produced by β-carbolines: structure activity relationships and substrate specificity. Biochem Pharmacol 26: 1991–1996Google Scholar
  6. Buckholtz NS, Boggan WO (1977b) Inhibition by β-carbolines of monoamine uptake into a synaptosomal preparation: structure activity relationships. Life Sci 20: 2093–3100Google Scholar
  7. Braestrup C, Squires RF (1978) Brain specific benzodiazepine receptors. Br J Psychiat 133: 249–260Google Scholar
  8. Costa E, Guidotti A (1979) Molecular mechanisms in the receptor action of benzodiazepines. Ann Rev Pharmacol Toxicol 19: 531–545Google Scholar
  9. Costa T, Rodbard D, Pert CB (1979) Is the benzodiazepine receptor coupled to a chloride anion channel? Nature 277: 315–317Google Scholar
  10. Damm HW, Müller WE, Schläfer U, Wollert U (1978) [3H]-flunitrazepam: its advantages as a ligand for the identification of benzodiazepine receptors in rat brain membranes. Res. Comm Chem Path Pharmacol 22 597–600Google Scholar
  11. Damm HW, Müller WE, Wollert U (1979) Is the benzodiazepine receptor purinergic? Eur J Pharmacol 55: 331–333Google Scholar
  12. Davis LG, Cohen RK (1980) Identification of an endogenous peptide-ligand for the benzodiazepine receptor. Biochem. Biophys Res Commun 92: 141–148Google Scholar
  13. Honecker H, Rommelspacher H (1978) Tetrahydronorharmane (tetrahydro-β-carboline), a physiologically occurring compound of indole metabolism. Naunyn-Schmiedeberg's Arch Pharmacol 305: 135–141Google Scholar
  14. Mao CC, Guidotti A, Costa E (1975) Evidence for an involvement of GABA in the mediation of the cerebellar cGMP decrease and the anticonvulsant action of diazepam. Naunyn-Schmiedeberg's Arch Pharmacol 289: 369–378Google Scholar
  15. Marangos PJ, Paul SM, Goodwin FK (1979) Putative endogenous ligands for the benzodiazepine receptor. Life Sci 25: 1093–1102Google Scholar
  16. Möhler, H, Okada T (1978) The benzodiazepine receptor in normal and pathological human brain. Br J. Psychiat 133: 261–268Google Scholar
  17. Möhler H, Polc P, Cumin R, Pieri L, Kettler R (1979) Nicotinamide is a brain constituent with benzodiazepine-like actions. Nature 278: 563–565Google Scholar
  18. Müller WE (1980) Der Benzodiazepinrezeptor. Dtsch Med Wochenschr. 105: 69–71Google Scholar
  19. Müller WE, Schläfer U, Wollert U (1978) Benzodiazepine receptor binding: the interactions of some non-benzodiazepine drugs with specific [3H]diazepam binding to rat brain synaptosomal membranes. Naunyn-Schmiedeberg's Arch Pharmacol 305: 23–26Google Scholar
  20. Naranjo C (1979) Psychotropic properties of harmala alcaloids In: Efron D, Holmstedt B, Kline N (eds) Ethnopharmacologic search for psychoactive drugs. Raven Press, New York, p 385Google Scholar
  21. Nielsen M, Gredal O, Braestrup C (1979) Some properties of [3H]diazepam displacing activity from human urine. Life Sci 25: 679–686Google Scholar
  22. Paul SM, Syapin PJ, Paugh BA, Moncada V, Skolnick P (1979) Correlation between benzodiazepine receptor occupation and anticonvulsant effects of diazepam. Nature 281: 688–689Google Scholar
  23. Rommelspacher H, Strauss SM, Rehse K (1978) β-carbolines: A tool for investigating structure-activity relationships of the high-affinity uptake of serotonin, noradrenaline, dopamine, GABA, and choline into a synaptosome-rich fraction of various regions from rat brain. J Neurochem 30: 1573–1578Google Scholar
  24. Rommelspacher H, Strauss S, Lindemann J (1980) Excretion of tetrahydroharmane and harmane into the urine of man and rat after a load with ethanol. FEBS Lett 109: 209–212Google Scholar
  25. Shoemaker DW, Cummins JT, Bidder TG, Bocttger HG, Evans M.: Identification of harman in the rat arcuate nucleus. Naunyn-Schmiedeberg's Arch Pharmacol 310: 277–230 (1980)Google Scholar
  26. Sigg EB, Gyermek L, Hill RT, Yen HCY (1964) Neuropharmacology of some harmane derivates. Arch Int Pharmacodyn 149: 164–180Google Scholar
  27. Singbartl G, Zetler G, Schlosser L (1973) Structure-activity relationships of intracerebrally injected tremorigenic indole alkaloids. Neuropharmacology 12: 239–244Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hans Rommelspacher
    • 1
  • Christel Nanz
    • 1
  • Harald O. Borbe
    • 2
  • Klaus J. Fehske
    • 2
  • Walter E. Müller
    • 2
  • Uwe Wollert
    • 2
  1. 1.Institut für NeuropsychopharmakologieFreie Universität BerlinBerlin 19Federal Republic of Germany
  2. 2.Pharmakologisches Institut der Universität MainzMainzFederal Republic of Germany

Personalised recommendations